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Abstract

A common statistical problem in finance is measuring the goodness-of-fit of a given
distribution to real world data. This can be done using distances to measure how close
an empirical distribution is from a theoretical distribution. The tails of the distribution
should receive special importance if the focus is on Value-at-Risk (VaR) calculations. This
paper analyzes the use of distances to test the goodness-of-fit of estimated distributions
for VaR calculation purposes. The Crnkovic and Drachman (1996) distance and a new
distance are used to perform goodness-of-fit tests. The critical values of the tests are
obtained using Monte Carlo simulation, and goodness-of-fit tests are performed based
on the distances. The power of the tests is assessed through Monte Carlo experiments,
showing good results for sample sizes greater than 250. The US Dollar/Brazilian Real
exchange rate and the Ibovespa index are used as examples of practical applications of
how to test the hypothesis that an empirical distribution is equal to an estimated one.
The estimated distributions considered are the Generalized Hyperbolic (GH), the NIG
(Normal Inverse Gaussian) and Normal. The test results rejected the null hypothesis for
the Normal distribution, but did not reject it for the Generalized Hyperbolic and NIG,
both at a 1% significance level.
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1. Introduction

A frequent problem in statistics and finance is measuring the goodness-of-fit
of a theoretical1 distribution to real world data. Knowing the distribution of
empirical data, one can use the distribution properties to perform several useful
calculations in finance, such as Value-at-Risk (VaR), Option Pricing, Credit Risk,
etc.

Usual goodness-of-fit tests, such as the Kolmogorov-Smirnov and Kuiper tests,
analyze whether all parts of the empirical distribution have a specific distribution.
However, in a risk management environment, the focus of analysis is on the tails of
the distributions, since risk managers are concerned about the extreme returns of
financial assets. As pointed out by Berkowitz (2002), “. . . risk managers are often

exclusively interested in an accurate description of large losses or tail behavior.

They do not want to reject a model that forecasts tail events well because of failure

to match the small day-to-day moves that characterize the interior of the forecast

distribution”. Therefore, in a risk management environment, the goal of a test
should be whether the tails of the theoretical distribution are a good approximation
to the tails of the empirical distribution, and then we would obtain better risk
measures when using this theoretical distribution.

The main goal of this paper is to analyze the use of distances to measure how
close an empirical distribution is from a theoretical distribution, giving special
importance to the tails. These kinds of distances would be appropriate to measure
the goodness-of-fit of distributions to estimate the risk of a portfolio, especially to
calculate the VaR, the most used risk measure.

This paper analyzes two tail-focused distances: the CD (Crnkovic and Drach-
man, 1996) distance and a new one, proposed in this article. These distances are
used as a criterion to perform goodness-of-fit tests to verify whether the theoreti-
cal distribution is equivalent to the empirical distribution. Tail-focused distances
have been used to rank distributions in terms of goodness-of-fit to empirical data,
but no hypothesis tests have been performed so far in the literature, except for
the Crnkovic and Drachman (1996) paper.2 Ranking the distributions only is not
sufficient, since even the best ranked distribution may have a poor fitting to em-
pirical data. If more than one distribution is not rejected by the test, we should
choose the one that is best ranked according to the distances being considered.
Therefore, the methodology proposed in this paper can be used to assess which
distributions are adequate, and to choose the best one from a set of distributions.

1With parameters estimated based on empirical data. In this paper, we use the expression
“theoretical distribution” as synonymous with “estimated distribution”.

2Crnkovic and Drachman (1996) use a tail-focused distance to perform a backtest. This
paper, however, focuses on a distributional test, instead of a backtest. We use past empirical
data to choose the distribution that best fits past data.
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To perform the tests using tail-focused distances, it is necessary to calculate
the critical values, which is done in Section 4 of this paper, using Monte Carlo Sim-
ulation, to two kinds of distribution: Normal and Generalized Hyperbolic (GH).
Section 5 assesses the power of the test to identify differences among different
distributions.

In Section 6, data from the US Dollar/Brazilian Real (USD/BRL) exchange
rate and from the São Paulo Stock Exchange Index (Ibovespa) are used to exem-
plify a goodness-of-fit test: first, the parameters of an unconditional GH (General-
ized Hyperbolic) and NIG (Normal Inverse Gaussian) distributions3 are estimated
using maximum log-likelihood; second, the critical values for unconditional Nor-
mal, GH and NIG estimated are calculated for the sample sizes using Monte Carlo
Simulation; third, the null hypothesis that the estimated distribution is equal to
the empirical distribution using distance criteria is tested.

This paper is organized as follows: in Section 2, we motivate the use of VaR
in risk management. In Section 3, we have a brief revision of goodness-of-fit tests
and distances and the new distance is presented. In Section 4, the critical values
are calculated. Section 5 analyzes the power of the proposed test. Section 6
provides a practical application. In the last sections, we have the conclusions and
an appendix with the description of the GH distributions.

2. Value-at-Risk and Risk Management

A risk manager who is trying to measure the market risk needs to define many
important issues, as for example, which is the most suitable measure of market
risk? Which method should be used, a simulation or an analytical (also called
parametric) method to compute this measure? Which is the adequate sample size
from historical data to make the calculations?

The Basel Committee on Banking Supervision has suggested a single number
that summarizes the total market risk in a portfolio of financial assets called Value-
at-Risk (VaR). The VaR is defined as:

P [R < −V aR(α)] = 1 − α

where R is the returns and α is the significance level at which the VaR is being
calculated. It shows how often things can get bad in a given time horizon. The
Basel Committee has also suggested the use of a 10-day time horizon and a 99%
confidence level for measuring the bank’s capital adequacy and requirement.

The VaR has been widely used by financial institutions and central bank reg-
ulators to measure risk exposures. A precise estimation of the VaR is therefore
useful from many points of view: a downward bias VaR may lead to excessive
risk to the institution, whereas an upward bias VaR may lead to excessive capital

3More details about GH and NIG distributions in the Appendix.
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requirement by central banks. It is worth mentioning also that banks with inac-
curate internal VaR models are penalized by central banks through an increase in
capital requirements.

Then, once we have chosen VaR as the market risk measure, we turn to the
other issues: analytical or simulation methods? Well, here we find a trade-off
between simplicity, computational effort and forecasting (Dowd, 2002).

When analytical methods are used, a crucial decision is how to model each
risk factor (for example, how to model a stock price or an exchange rate). One
of the most important steps in a model is the distribution to be used. Many
statistics based on distances have been developed to measure this goodness-of-
fit of a distribution to the empirical data. In the next section we present the
most important distances and statistics used to test this goodness-of-fit, and we
introduce a new distance, which gives more weight to deviations occurring in the
tails of the distribution.

3. Distances

To measure how close an empirical distribution is from a theoretical distri-
bution, several distances have been proposed. Among them, we can cite three:
Kolmogorov distance, Kuiper distance and Anderson-Darling distance.

The Kolmogorov distance (see, for example, Massey (1951)) is defined by the
greatest distance between the empirical distribution and the theoretical distribu-
tion, for all possible values:

DKol = max
x ∈ ℜ

|fEmp(x) − fTheo(x)| (1)

where fEmp is the empirical cumulative density function and fTheo is the contin-
uous and completely specified theoretical cumulative density function.
fEmp can be defined by:

fEmp(x) = (number of X ′
is ≤ x)/n

where X ′
is are the sample’s elements and n is the number of sample elements.

The Kuiper distance (see Kuiper (1962)) is similar to the Kolmogorov dis-
tance, but it considers the direction of the deviation, adding the greatest distances
upwards and downwards:

DKui = max
x ∈ ℜ

{fEmp(x) − fTheo(x)} + max
x ∈ ℜ

{fTheo(x) − fEmp(x)} (2)

The Anderson and Darling (1952) paper proposes two distances, stated in
equations 2.1 and 2.2 of that paper. Let us consider the second one in this general
case:
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DADn = max
x ∈ ℜ

√
n |fEmp(x) − fTheo(x)|

√

ψ(x) (3)

where n is the sample size and ψ(x) is a weight function.
But the AD distance most widely known in the literature is the one expressed

in example 2 of the Anderson and Darling (1952) article, with the weight function
ψ(x) defined as follows:

ψ(x) =
1

√

fTheo(x) (1 − fTheo(x))
(4)

This function has the effect of weighting the tails heavily since this function
is large near fTheo = 1 and fTheo = 0. A common simplification used is the
suppression of n1/2 from (3). It can be used if the sample sizes that are being
compared are the same. So the AD distance considered in this paper will be the
following:

DAD = max
x ∈ ℜ

|fEmp(x) − fTeo(x)|
√

fTeo(x) (1 − fTeo(x))
(5)

The AD distance is especially interesting to perform VaR calculations, since it
is more sensitive in the tails than in the middle range of the distribution. Prause
(1999) uses the AD distance to assess which theoretical distribution fits better the
data of German Stocks. The distributions assessed were Normal, GH, Hyperbolic
and NIG. Nevertheless, a hypothesis test using AD distance was not performed by
Prause.

Another distance that is appropriate for VaR calculations is the Crnkovic and
Drachman (1996). It can be viewed as Kuiper distance with weights. The CD
distance uses the worry about the direction of the deviation from Kuiper distance
and incorporates a weight function to give special importance to the tails:

DCD = max
x ∈ ℜ

−0.5 (fEmp(x) − fTheo(x)) (Log (fTheo(x) (1 − fTheo(x))))

+ max
x ∈ ℜ

−0.5 (fTeo(x) − fEmp(x)) (Log (fTheo(x) (1 − fTheo(x)))) (6)

The distance proposed in this paper is similar to the CD distance, and is
a combination of the Kuiper and AD distances. It uses the weight function of
the AD distance and the worry about the direction of deviation as in the Kuiper
distance. So, it captures the strengths of Kuiper and AD distances. The difference
between the new distance and the CD distance is that the new distance gives even
more emphasis to tails. Figure 1 plots the weight functions of the CD and of the
new distance. The formula of the new distance is:
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DNew = max
x ∈ ℜ

fEmp(x) − fTeo(x)
√

fTeo(x) (1 − fTeo(x))
+ max

x ∈ ℜ

fTeo(x) − fEmp(x)
√

fTeo(x) (1 − fTeo(x))
(7)

The expectation is that this new distance could be more appropriate for VaR
calculations because it captures the tail discrepancies much better.
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Figure 1

4. Critical Values

To perform the hypothesis tests, it is necessary to calculate critical values of
the distances for some target significance levels and sample sizes. In this sec-
tion we present examples of critical values for the new distance and for the CD
distance, using two distributions: a Standard Normal and a Normal Inverse Gaus-
sian (NIG).4 We use 50, 100 and 200 for sample sizes. The critical values were
obtained after 10,000 Monte Carlo (MC) Simulation runs. For each MC run, we
do the following steps:

• Draw n independent random numbers Ui from a uniform distribution [0,1],
where n is the sample size (50, 100 or 200);

4We are using a Symmetric Centered Normal Inverse Gaussian distribution with parameters
alpha=1, beta=0, sigma=1, mi=0 and lambda=−0.5. The N.I.G. distribution is a special case of
the Generalized Hyperbolic and it is closed under convolutions. See more details in the Appendix.
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• Make Xi = F−1(Ui), where F is the theoretical cumulative distribution
function (Normal or NIG);

• Calculate the distance (CD or the New one) between the sample generated
in the previous steps and the theoretical distribution F .

At the end of the 10,000 runs, we will have 10,000 distances that will be
ordered, so that we obtain a sequence Q of size 10,000. So, the critical value
for the significance level S will be the (1 − S) percentile of the ordered distance
sequence Q.

The tables cover the significance levels of 1%, 5%, 10% and 20%, and the
sample sizes of 50, 100 and 200. The null hypothesis (H0) and the alternative
hypothesis (H1) are the following:

H0: the empirical distribution is equal to the theoretical one (Normal or NIG);
H1: the empirical distribution is different from the theoretical one (Normal or

NIG).
The results are shown in Tables 1 and 2. The tables contain the critical values

V ’s such that:

P [Distance>V ] = α

Where α is the confidence level and D is the distance (the new one or the CD).

Table 1
Critical values – NIG

New distance Distance CD

Significance level Significance level

Sample 1% 5% 10% 20% 1% 5% 10% 20%
size

50 1.7421 0.8954 0.7272 0.5768 0.2475 0.2073 0.1893 0.1691

100 1.3328 0.6835 0.5458 0.4386 0.1808 0.1534 0.1400 0.1258

250 0.9237 0.4465 0.3569 0.2933 0.1124 0.0984 0.0906 0.0825

Table 2
Critical values – Standard normal distribution

New distance Distance CD

Significance level Significance level

Sample 1% 5% 10% 20% 1% 5% 10% 20%
size

50 1.4429 0.7592 0.5980 0.4817 0.1882 0.1658 0.1532 0.1396

100 1.2147 0.5990 0.4576 0.3684 0.1414 0.1223 0.1142 0.1043

250 0.9879 0.4380 0.3318 0.2617 0.0910 0.0813 0.0756 0.0694

Note that these critical values are purposes. For real financial market appli-
cations one would probably need to calculate the minimum significance level at
which a hypothesis would be rejected (the so called p-value). And the sample
sizes would be different from those of Tables 1 and 2. So, it would be necessary
to perform MC simulation runs for that specific sample size, and also to calculate
the minimum significance level at which the hypothesis is rejected.
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5. Assessing the Power of the Test

To evaluate the power of the proposed test, the following procedure is used: a
standard Normal distribution is taken as the theoretical distribution, and several
other distributions are used to generate a large number of samples, i.e., they are
considered the “true” empirical distribution (TED). For each sample generated,
the distance between the standard Normal (the theoretical distribution) and the
generated sample (the empirical distribution) is calculated and compared with the
critical values of the Standard Normal for that distance, in order to evaluate the
null hypothesis that both distributions are equal. So, for each sample, we have a
binary result of the “reject” or “do not reject” type. Note that the two distributions
are different by construction, so the desirable result is to reject the null hypothesis.
Therefore, the higher the percentage of rejection, the more powerful the test. The
percentage of “do not reject” may be viewed as the percentage of type II error5 of
the test, and the lower this number, the better the test.

This approach has been used to assess statistical tests, including backtests of
VaR models, see, for example, Lopez (1998) and Kerkhoff and Melenberg (2004).
As this paper focuses on distributional tests, our approach is slightly different –
our aim is to assess pairs of different distributions instead of pairs of distributions
with the same probability function, but with different parameters.6 Kerkhof and
Melenberg (hereafter referred to as K&M) compare a Standard Normal distribu-
tion with a student-t and two Normal Inverse Gaussian (NIG) distributions – one
symmetric and other with high asymmetry. The rationale behind this is that real
world financial data possess two characteristics: fat tails and negative asymmetry
(see, for example, Rydberg (1997)), but in general risk models, a Normal distri-
bution is used to model data. So, by considering the Normal distribution as the
theoretical distribution and empirical distributions with fat tails and asymmetry,
we can assess whether the test is able to detect distributional differences that often
occur in real world applications.

This paper will use three “true” empirical distributions that are very similar
to those of K&M, and compare them with a Standard Normal distribution (the
one we chose as theoretical). The three TED used are:

• A Scaled-t distribution (see the Appendix for details), with scale parameter
equal to one, location parameter equal to zero and 5 degrees of freedom.
This is a symmetric distribution, with expected value equal to zero and
standard deviation equal to one. The only difference from the Standard
Normal distribution is an excess kurtosis. K&M use a Student-t with 5
degrees of freedom, i.e., symmetric and centered, but with a variance larger

5Type II error is not to reject the null hypothesis when it is actually false.
6Lopez (1998) compares Normal and student-t distributions with different parameters to

assess backtesting procedures. K&M and Lopez also use econometric models such as GARCH
to model the volatility of the distribution. This paper analyzes only distributional discrepancies,
rather than differences in the parameterization.
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than 1. We decided to use a Scaled-t to use the same variance of he Standard
Normal distribution;

• A symmetric NIG. This is exactly the same symmetric NIG used by K&M,
and has a moderate excess kurtosis;

• A negatively skewed NIG. This is the same distribution used by K&M, except
for the location parameter that we adjusted in order to obtain an expected
value equal to zero. Therefore, this distribution has the same expected value
and variance of the Standard Normal distribution, and a large excess kurto-
sis.

Table 3 summarizes the characteristics of the distributions used, and Table
4 shows the parameters. Note that the Scaled-t is the closest to the Standard
Normal distribution, and the Asymmetric NIG is the most different.

Table 3
Distribution characteristics

Panel A – True empirical distributions

“True”
empirical Expected Standard Symmetry Relative
distribution value deviation kurtosis

Scaled-t 0 1 Symmetric Small excess

Symmetric NIG 0 1 Symmetric Moderate
excess

Asymmetric NIG 0 1 Negatively Large
skewed excess

Panel B – Theoretical distribution

Standard 0 1 Symetric –
normal

Table 4
Parameters

Panel A – Normal inverse Gaussian

Parameters α β δ µ

Symmetric NIG 1 0 1 0

Asymmetric NIG 1.031 −0.250 0.941 0.235

Panel B – Scaled-t

µ σ DoF

Scaled-t 0 1 5

We use a Monte Carlo simulation approach to estimate the power of the test.
In order to reduce the variance of the simulation we apply the Stratified Sampling
technique.7 We considered sample sizes of 125, 250, 500 and 1,000. Besides the
new distance and the CD, we also tested the power of the Kolmogorov distance.
The procedure was the following:

We performed 25 sets of 1,000 MC runs. Each MC run had the following steps:

7That can be viewed as the one-dimensional case of the Latin Hypercube.
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• Draw n random numbers Ui from a uniform distribution [0,1] using the
Stratified Sampling technique8 with 20 strata, where n is the sample size
(125, 250, 500 and 1,000);

• Make Xi = F−1(Ui), where F is the cumulative distribution function of the
true empirical distributions considered (see Table 3 for the list of distribu-
tions and the Appendix for a description of the distributions, including the
pdf’s);

• Calculate the three distances (Kolmogorov, CD, the New one) between the
sample generated in the previous steps and the Standard Normal distribution
(our theoretical distribution);

• For each distance and each TED, calculate the p-value for the null hypothesis
that the true empirical distribution is equal to the theoretical distribution
(Standard Normal) using critical values calculated as described in Section 4;

• If the p-value is lower than the significance level of 5%, we reject the null
hypothesis, otherwise we do not reject it.

For each set of 1,000 MC runs, we calculated the percentage of type II error
(i.e. do not reject the null hypothesis when it is actually false) dividing the number
of “do not reject” by 1,000. So we had 25 type II errors from which we took the
average and the standard deviation. The results are shown in Table 5, in terms of
type II error percentages.

Table 5
Power of the tests

Panel A – Type II error – Mean

Scaled-t Symmetric NIG Asymmetric NIG

Sample New CD Kolmog New CD Kolmog New CD Kolmog

Size

125 42.07% 81.97% 100% 38.15% 74.52% 100% 20.59% 44.86% 100%

250 20.67% 55.15% 100% 16.46% 25.49% 100% 5.60% 1.39% 98.97%

500 5.28% 5.80% 99.99% 3.69% 0.02% 98.89% 0.70% 0.00% 0.00%

1000 0.26% 0.00% 46.87% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00%

Panel B – Type II error – Standard deviation

Scaled-t Symmetric NIG Asymmetric NIG

Sample New CD Kolmog New CD Kolmog New CD Kolmog

Size

125 1.17% 1.58% 0% 1.55% 1.02% 0% 1.16% 1.07% 0%

250 1.44% 1.78% 0% 1.17% 1.87% 0% 0.59% 0.49% 0.29%

500 0.76% 0.83% 0.03% 0.66% 0.05% 0.36% 0.29% 0.00% 0.00%

1000 0.19% 0.00% 1.68% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00%

The new and CD distances produce much better results than the Kolmogorov
distance. For the two tail-focused distances, the type II error amounts to approx-
imately zero with a sample size of 500, when considering the NIGs, while for the
Scaled-t the type II error is near 5% with a sample size of 500, and near zero

8See Dowd (2002:300) for details of the Stratified Sampling technique.
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with a 1,000-sample size. For the sample sizes of 125 and 250, the new distance
outperforms the CD distance, while for samples sizes of 500 and 1,000, the results
are similar, with the CD distance yielding slightly better results.

Results for the Kolmogorov distance can be considered acceptable only with
big sample sizes. In the case of the Scaled-t, even the sample of 1,000 observations
does not produce very reliable results.

Concluding, the two tail-focused distributions have a good power for samples
with 500 or more observations. Even for samples of 250 observations, these tests
can detect a mismatch, if the two distributions are not very similar. On the other
hand, the Kolmogorov distance sometimes requires more than 1,000 observations.

6. Parameter Estimation and Goodness-of-fit Tests

In this section, data from the US Dollar/Brazilian Real exchange rate and São
Paulo Stock Exchange Index are used to exemplify a goodness-of-fit test. We aim
to test whether unconditional Normal, Generalized Hyperbolic (GH) and NIG9

(Normal Inverse Gaussian) distributions are statistically equal to the empirical
distribution. The parameters were estimated by maximum log-likelihood.

6.1 Data description

We use two samples of data to apply the test. The first is the US Dol-
lar/Brazilian Real exchange rate (USD/BRL) from 01/13/1999 to 08/29/2002.
The initial date coincides with the beginning of the free-floating exchange rate
regime in Brazil. The second is the Ibovespa Index, from the São Paulo Stock
Exchange, Brazil, from 07/01/1994 to 12/13/2001. The initial date was chosen
because it was the beginning of the low inflation period in Brazil (the so-called
“Plano Real” or Real Plan), after several years of high inflation.

Note that the size of both samples is big enough to produce reliable results,
according to the assessment made in Section 5.

The returns used were logarithmic. In Table 6 we have the main information
on the samples.

Table 6
Power of the tests

Ibovespa USD/BRL

Return average 0.000699379 0.00100

Return standard deviation 0.0279509 0.01310

Asymmetry 0.6033660 0.23560

Kurtosis 14.74590 21.2117

Number of observations 1,843 945

6.2 Parameter estimation

The parameters of a NIG and GH are estimated using maximum log-likelihood.
Blæsild and Sørensen (1992) use maximum log-likelihood estimation for hyperbolic

9See in the Appendix that the NIG is a special case of the GH.
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distributions, and Fajardo and Farias (2004) also use log-likelihood, but to estimate
the general case of the GH. As we need to estimate a GH and NIG distribution,
we use the Fajardo and Farias’ approach and programs. Estimated parameters are
shown in Table 7:

Table 7
Power of the tests

N.I.G. Generalized hyperbolic

Parameters Ibovespa Dollar/Real Ibovespa Dollar/Real

α 31.909 32.77 1.7102 20.412

β −0.00348 3.413905 −1.66835 0.150185

δ 0.023296 0.00527 0.03574 0.006388

µ 0.0012222 0.0004294 0.00199 0.0006121

λ −0.5 −0.5 −1.828 −0.727

6.3 Critical values

After parameter estimation, the critical values for both CD and the new dis-
tances can be calculated considering our sample sizes (945 and 1,843 observations),
for the GH and NIG estimated in Subsection 6.2 and for the Normal distribution.
That is done using 10,000 Monte Carlo runs. The null hypothesis (H0) and the
alternative hypothesis (H1) of the test are the following:
H0: the estimated distribution is equal to the empirical distribution;
H1: the estimated distribution is different from the empirical distribution.
The critical values for some selected significance levels are shown in Tables 8 and
9.10

Table 8
Critical values – New distance

Distribution
Normal NIG GH

Sample size Sample size Sample size
945 1843 945 1843 945 1843

1% 0.5937 0.4638 0.5318 0.319 0.6209 0.5458

5% 0.2616 0.203 0.2853 0.181 0.3213 0.3072

10% 0.1957 0.1479 0.2125 0.1442 0.237 0.2125

20% 0.1512 0.1135 0.1727 0.1187 0.1861 0.1507

Table 9
Critical values – Normal – CD

Distribution
Normal NIG GH

Sample size Sample size Sample size
945 1843 945 1843 945 1843

1% 0.0484 0.035 0.0587 0.0428 0.0589 0.0427

5% 0.0431 0.0311 0.0511 0.0375 0.0509 0.0375

10% 0.0402 0.0292 0.0475 0.0347 0.0475 0.0349

20% 0.037 0.0268 0.0434 0.0318 0.0434 0.0316

10Again, the tables contain the critical values V ’s such that P [Distance>V ] = confidence
level, where the distance could be the new one or the CD.
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6.4 Hypothesis tests

Finally, the null hypothesis that the estimated distribution is equal to the
empirical distribution can be tested using criteria based on these two distances.
Also, hypothesis tests using the Kolmogorov and Kuiper distances are performed
to compare the results.

The distances between the empirical and theoretical distributions are calculated
and compared to the critical values at the 1% significance level. The results are
shown in Table 10 for the USD/BRL and Table 11 for the Ibovespa.

Table 10
Dollar/Real hypothesis tests

Distribution
Normal NIG GH

Distance p- Test Distance p- Test Distance p- Test
value value result value value result value value result

at 1% at 1% at 1%

New 182,980 0.000 Reject 0.14304 0.374 Not 0.1475 0.398 Not
distance reject reject

CD 0.2141 0.000 Reject 0.03530 0.547 Not 0.0524 0.038 Not
reject reject

Kolmogorov 0.1334 0.000 Reject 0.02989 0.362 Not 0.0312 0.312 Not
reject reject

Kuiper 0.2620 0.000 Reject 0.05859 0.34 Not 0.0616 0.019 Not
reject reject

Table 11
Ibovespa hypothesis tests

Distribution
Normal NIG GH

Distance p- Test Distance p- Test Distance p- Test
value value result value value result value value result

at 1% at 1% at 1%

New 50,957 0.000 Reject 0.1385 0.112 Not 0.0737 0.915 Not
distance reject reject

CD 0.1169 0.000 Reject 0.0336 0.13 Not 0.0222 0.794 Not
reject reject

Kolmogorov 0.0661 0.000 Reject 0.0166 0.683 Not 0.0093 0.997 Not
reject reject

Kuiper 0.1305 0.000 Reject 0.0253 0.698 Not 0.0172 0.992 Not
reject reject

As can be seen in the tables above, the tests reject the hypothesis that the
estimated Normal distribution is equal to the empirical distribution at the 1%
significance level for all distances considered. Also, the tables show that the hy-
pothesis that the empirical distribution is equal to the estimated NIG cannot be
rejected at the 1% significance level for distance tests. The only p-value of the NIG
that is somewhat near rejection is that of the Kuiper distance of the Dollar/Real
exchange rate; all others are far from rejection.

For both assets, the hypothesis tests do not reject that the empirical data have
GH and NIG distribution. Now a new question arises: which distribution should
we use in a risk model? If we are concerned only with goodness-of-fit, we should
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choose the distribution with the lowest distances. For the USD/BRL exchange
rate, the NIG has all distances lower than GH, whereas in the Ibovespa index the
GH has lower distances. Therefore, when using a parametric model for calculating
the VaR of portfolios, we should use a NIG for the exchange rate, and a GH for
the index.

If we are also interested in the parsimony of the model, we should consider
also the number of parameters of the distributions. As the NIG has one less
parameter than the GH (it is a special case), for the USD/BRL exchange rate,
we would choose the NIG. For the Ibovespa index, we have a trade-off between
goodness-of-fit and parsimony.

Finally, it is worth mentioning that this empirical application uses uncondi-
tional distributions, whereas actual risk models use conditional distributions such
as a Normal distribution with a volatility given by EWMA or GARCH models.
The tests used here can be adapted for conditional distributions, and in this case,
the theoretical distribution has to be built with the use of the volatility model.

7. Conclusion

This paper analyzed the use of distances to test the goodness-of-fit of estimated
distributions for VaR purposes. Besides the Crnkovic and Drachman (1996) dis-
tance, a new distance was proposed to perform goodness-of-fit tests on financial
assets return distributions. Critical values were calculated to perform such tests.

The US Dollar/Brazilian Real exchange rate and the Ibovespa Index were used
as examples of a practical application of how to test the hypothesis that an em-
pirical distribution is equal to an estimated one. These tests were done consider-
ing Normal, NIG and GH distributions, and four distance criteria (Kolmogorov,
Kuiper, CD and the new distance). For the Normal distribution, the test results
rejected the hypothesis that the empirical distributions are equal to the estimated
one, but there was no rejection for the NIG and GH at the 1% significance level.

The test can be easily applied to other kinds of distributions and assets, in-
cluding portfolios, since it requires only the returns series and the expression for
the distribution’s density.

As a suggestion for further research, these VaR-focused distances (CD and the
new one) can be used to estimate the distribution parameters through minimiza-
tion of the distance. That was done in Prause (1999), where the author used an
estimation method to minimize the Anderson-Darling distance. So, with an esti-
mation focused on the tails of the distribution, the VaR measure is expected to be
more reliable. Another interesting improvement is to consider more efficient sam-
pling techniques in the Monte Carlo simulation, as is done by Saliby and Araújo
(2001).
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Appendix

Generalized Hyperbolic

The density probability function of one-dimensional GH distribution is defined
by the following equation:

GH(x;λ, α, β, δ, µ) = a(λ, α, β, δ)(δ2 + (x− µ)2)(λ−1/2)/2

× Kλ−1/2

(

α
√

δ2 + (x− µ)2
)

e(β(x−µ))

where Kx is the modified Bessel function of the third kind and

a(λ, α, β, δ) =

(

α2 − β2
)λ/2

√
2πα(λ−0.5)δλKλ(δ

√

α2 − β2)

The parameters are real numbers with the following restrictions (see Prause
(1999)):

δ ≥ 0, |β| < α if λ > 0

δ > 0, |β| < α if λ = 0

δ > 0, |β| ≤ α if λ < 0

The parameter α is a scale factor, compared to the σ of a Normal distribution,
and µ is a location parameter. Parameters α and β determine the distribution
shape and λ defines the subclasses of GH and is directly related to tail fatness
(Barndorff-Nielsen and Blæsild, 1981). The function a(.) is introduced to guaran-
tee that the cumulative distribution has values between zero and one.

Its log-density is hyperbolic while Gaussian distribution log-density
is a parabola, for this reason it is called Generalized Hyperbolic. We can do a
reparametrization of the distribution so that the new parameters are scale invari-
ant. The new parameters are defined in the equations:

Second parametrization: ζ = δ
√

α2 − β2, ψ = βα
Third parametrization: ξ = (1 + ζ)−1/2, χ = ξψ

Fourth parametrization: ᾱ = αδ, β̄ = βδ

The GH has several subclasses, among them, the Hyperbolic and Normal In-
verse Gaussian (NIG). By setting λ = −1/2, we get the NIG, and with λ = 1, we
get the Hyperbolic distribution. The Gaussian is a limiting distribution of GH,
when δ → ∞ and δ/α→ σ2.
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Scaled-t

The density function of the scaled Student t distribution is the following:

f (x;µ, σ, v) =
Γ

(

v+1
2

)

Γ(v/2)
√

π(v − 2)σ2

[

1 +
(x− µ)2

(v − 2)σ2

](v+1)/2

where v is the degrees of freedom parameter, µ is the location parameter and σ
the dispersion parameter.

When v → ∞ the Student t converges to the Normal Distribution.
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