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1. Introduction

The interest rate term structure provides a connection between interest rates
and maturities. Its uses are manifold: pricing of fixed-income instruments and in-
terest rate derivatives, portfolio management, risk management, rates forecasting,
economic growth forecasting, estimation of risk premium, and monetary policy ac-
tions, among others. Due to its many uses, its estimation and the understanding
of its movement in time is of considerable importance for practitioners, academics
and central bankers. In the words of Alan Greenspan, former president of the Fed-
eral Reserve: “the broadly unanticipated behavior of world bond markets remains
a conundrum”.1

The fact that the movements of the interest rate curve affect the price of
fixed-income assets, together with the uncertainty surrounding the future interest
rate curve, makes it necessary for fixed income managers to protect themselves
against unexpected movements in the yield curve. To this end, several immu-
nization techniques have been proposed. Fisher and Weil (1971) showed that,
under the hypothesis of parallel changes in the interest rate curve, immunization
is reached when the horizon of the investment is equal to the duration of the
portfolio. Bierwag (1977) shows that duration-based hedging may not produce an
efficient immunization when different hypothesis regarding the stochastic process
of the interest rate are observed (multiplicative shocks and discrete compositions
of the rates) and proposes an immunization based on an adjusted duration. Khang
(1979) proposes a duration measure under the hypothesis that the short term in-
terest rates vary more than the long term ones. The problem of these approaches
lies in the fact that the accuracy of their strategy depends on a specific behavior
of the term structure.

An alternative approach that is a generalization of the previous ones was pro-
posed by Litterman and Scheinkman (1991) and consists in using principal com-
ponent analysis.2 They show that three principal components are enough to de-
scribe nearly all the historical movements of the American interest rate curve.3

These three factors were denominated by them as: level, slope and curvature (or
convexity). Additionally, they showed that portfolios immunized using duration
(technique still widely used in the Brazilian market) eliminate the risk of the level
factor, but not of the slope and curvature factors. As an example they built a port-
folio composed of three securities that, although neutral in duration, generated a

1Speech given at the Unite States Congress in February 2005. At that time, Alan Greenspan
was the president of the Federal Reserve.

2The latent orthogonal factors which explain the totality of the historical variation in the
time series built from a linear combination of the interest rate series of different maturities.

3Some examples of studies that demonstrate this result to other countries are: Barber and
Cooper (1996) for the American spot curve, Bühler and Zimmermann (1996) for the Swiss and
German spot curves, D’Ecclesia and Zenios (1994) for Italy, Golub and Tilman (1997) for the
American curve, Kärki and Reyes (1994) for Germany, Switzerland and USA, and Lekkos (2000)
for the German, England and Japan forward curves.
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considerable loss in a period of one month. That position was especially sensitive
to the curvature factor. Finally, they used the proposed hedging technique through
principal components for the same portfolio, considerably improving the result of
the operation. That is, they demonstrated the importance of considering different
movements to obtain an effective immunization. The problem in that approach is
that it needs the interest rates to be directly observables, which does not happen
in all fixed-income markets. When the interest rates are not directly observable,
an intermediate step – of building the interest rate curve – is necessary.4

To work around this problem, this study proposes an exponential parametric
model for interest rates that simultaneously builds the movements of the curve (a
rotation of the principal components) and allows undertaking the immunization
of a fixed-income portfolio based on the constructed multiple movements. We
theoretically derivethe necessary conditions to carry out a hedge or to trade the
movements of the curve (level, slope and curvature) using the proposed parametric
model. We additionaly show, through scenario analysis, the empirical applicability
of the derived hedge conditions using the Brazilian public debt bonds indexed
to CPI inflation. The parametric model is an extension of the Diebold and Li
(2006) model proposed by Almeida et al. (2007), that presents desirable forecasting
characteristics and that allows us to capture the high volatility of the interest rates
of an emergent market economy such as Brazil.

Diebold and Li (2006) use variations of the exponential components of the
framework proposed by Nelson and Siegel (1987) to model the spot rates, instead of
the forward rates, additionally, they use an autoregressive model (AR(1)) for each
of the factors to carry out a forecasting exercise of the American term structure.
The model is interesting because of the interpretation of the factors, similarly to
Litterman and Scheinkman, of level, slope and convexity. Additionally, it conforms
to the stylized factors of the interest rate curve that were recorded throughout
time and produces one year ahead forecastings that are notably better, for all
maturities, in absolute or relative terms, than the standard reference models.5

Almeida et al. (2007), compare the Diebold and Li model to an extended model
(in which the fourth factor, representing a second curvature, is added) to analyze
the importance of the curvature movement in the interest rates curve’s forecasting.
They report that the new factor increases the ability to generate more volatile and
non-linear interest rates, and, for this reason, in an experiment using data from
Brazilian term structure (DI Futuro contracts), they achieve better interest rates
forecastings than the Diebold-Li model, especially for shorter maturities (1 day, 1

4Some statistical models used for the construction of the interest rate curves are found in
McCulloch (1971), Langetieg and Smoot (1981), Vasicek and Fong (1982), Nelson and Siegel
(1987, 1988), Svensson (1995), Almeida et al. (1998).

5Some examples are: random walk, slope regression, Fama-Bliss forward-rate regression,
Cochrane-Piazzesi forward curve regression, AR(1) on the rates, VAR(1) on the rates, VAR(1)
on the rate variations, error correction model (ECM) with a common tendency, ECM with two
common tendencies and, finally, AR(1) with tree statistical principal components.
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month and 3 months). Additionally, they show that by adding a second curvature
to the Diebold and Li model the risk premium structures changes, producing better
forecastings of the bond excess returns.

Some of the studies related to the present one are the immunization models
using parametric duration and the immunization model using M -vector. The
firsts assume that the term structure can be represented by a function of few
risk factors multiplied by their loadings – usually polynomials and exponential
functions – and base the hedging strategy in a first order multivariate Taylor
expansion of the fixed income portfolio value. Some examples of this approach
using polynomials are: Cooper (1977), Garbade (1985), Chambers et al. (1988)
and Prisman and Shores (1988). Willner (1996) carries out an immunization using
the model described in Nelson and Siegel (1987). Bravo and Silva (2005) use the
model described in Svensson (1995) and derive the second order conditions under
which the portfolio convexity has a positive influence in the construction of the
hedge.6 The fundamental difference between the parametric duration models and
the one proposed in the present study is that the first does not implement an
immunization when the interest rate curve is unobservable, which is the aim of
our proposal.

Another procedure related to our model is the immunization using M -vector
proposed by Nawalka and Chambers (1997), a generalization of the M -square
concept proposed by Vasicek and Fong (1984). The model is based on a Taylor
expansion of the return function of a portfolio evaluated in a given investment
horizon, generating an interest rate dispersion measure, which, when minimized,
immunizes the fixed-income portfolio against parallel and non-parallel changes in
the interest rates. Bravo and Silva (2006), in a recent empirical study, construct
their curve using the Nelson and Siegel parametric model and investigate the
efficiency of several immunization strategies for the Portuguese public debt market,
such as: M -vector of several dimensions, duration, maturity,7 maturity-bullet and
maturity-barbell.8 They conclude that multifactor or single factor immunization
strategies eliminate the largest part of the interest rate risk subjacent to a more
näıve strategy, namely, the maturity strategy and, that the portfolio design in
regards to the immunization strategy matters to increase its efficiency.

The difference between the immunization model via M -vector and the one
proposed in the present study is that in the first the immunization is based in
a Taylor expansion which is the equivalent to a polynomial parametric model

6The limitation of this approach is that its implementation demands a vast amount of secu-
rities, which is not observed in emerging market economies.

7The immunization is done using the security whose maturity is the closest in a investment
horizon.

8Maturity-bullet is the strategy of combining the maturity with the closest security, but with
greater maturity than the investment horizon. Maturity-barbell is the strategy of combining the
security of the maturity strategy with a title of greater duration available in the sample. Both
strategies must fulfill the restriction of same duration for the portfolio and investment horizon.
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(when the higher orders in the Taylor expansion are used) and its implementation
is hinged on the previous knowledge of the instantaneous forward rates. Addi-
tionally, the movements that the interest rate curve may suffer are not explicitly
defined. The technique described in the present study, on the other hand, builds
the curve movements using an exponential parametric model and proposes that
the immunization be carried out by neutralizing these movements using a first
order Taylor expansion. With that, the movements extracted are intuitive and
very well defined, making their trading by fixed-income managers easier.

The procedure suggested in the present study generalizes the immunization
based in principal components proposed by Litterman and Scheinkman (1991),
because it does not need directly observable interest rates to build the latent
orthogonal factors and, after that, use them for hedging. By choosing a parametric
model, the factors that will be used for hedging result from the interest rate curve
estimation process, regardless of being observable or unobservable. In fact, the
immunization done using this approach is not only simple and efficient, but it is
equivalent to the procedure proposed by Litterman and Scheinkman. The reason
is that, according to Almeida et al. (2003), if a term structure model is separable;
its factors are built by a rotation of the latent orthogonal factors that define the
principal components.

Another contribution of our study is in presenting a methodology to build in-
flation curves, as well as comparing the inflation curve obtained from the Brazilian
public debt bond market (LTN/NTN-F and NTN-B) with the one obtained from
the derivatives market (DI Future- and IPCA Coupon [SDL]). This information
is important, because it allows us to extract the expected future inflation implicit
in instruments traded in the market. The future inflation measure thus extracted
seems to be the most reliable one, since it is the result of bets on the future behav-
ior of the real and nominal interest rates of the Brazilian economy by the market
agents.

A third contribution of the present study is the definition of two sloping move-
ments that can be used with the immunization approach based on duration and
convexity to trade the slope of the interest rate curve. These definitions, although
simple, are new, and highlight the fact that obtaining the slope and curvature
movement within the duration and convexity framework is not a natural proce-
dure. As a byproduct, the paper compares the proposed Svensson approach with
the duration and convexity one to trade the level and slope of the interest rate
curve (with and without the immunization of other risk factors that affect the
interest rate curve).

This study is thus organized: section 2 presents the model, carries out an
analysis of the model risk factors relating them to the principal components and
shows how simple it is to price a fixed-income portfolio using that framework;
section 3 discusses how to estimate the parameters of the model, and therefore, how
to build a time series for the latent factors; section 4 presents the theory behind the
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hedging of a fixed-income portfolio, as well as the procedures to trade on the curve
movements, that is, on the latent factors of the model; section 5 shows examples
of the method for hedging and leveraging in the Brazilian inflation-indexed public
debt market and a comparison with the approach based on duration and convexity.
Section 6 presents the methodology for the construction of the inflation curve and
compares the curves extracted from two markets:

(1) the government bonds market and

(2) the derivatives market.

Finally, section 7 presents our conclusions.

2. Models

2.1 Interest rate term structure

Nelson-Siegel (1987, 1988) originally derived the following model to describe
the forward curve dynamic:

f (τ) = a1 + a2 exp (−λ1τ) + a3 (λ1τ) exp (−λ1τ) (1)

Using the following relation between the forward rates and the spot rate:

R (τ) =
1

τ

∫ τ

0

f (τ) dτ (2)

It is possible to find the spot curve implied by the Nelson-Siegel model:

R (τ) = b1 + b2

(
1 − exp (−λ1τ)

λ1τ

)
− b3 exp (−λ1τ) (3)

The following equation represents the model used by Diebold-Li (2006).

R (τ) = a1 + a2

(
1 − exp (−λ1τ)

λ1τ

)
+ a3

[(
1 − exp (−λ1τ)

λ1τ

)
− exp (−λ1τ)

]
(4)

It is easy to notice there is a direct relation between (4) and (3): b1 = a1, b2 =
a2 + a3 and b3 = a3. Diebold and Li modified the original model by Nelson-
Siegel (1987), because the loadings of b2 and b3 have very similar decay forms,
which makes it difficult to provide an intuitive interpretation of the factors, as in
Litterman and Scheinkman of level, slope and curvature. Additionally, it poses
the problem of multicolinearity in regards to the estimation of the factors, due to
their similarity, which could affect the precision of the estimation.

The Diebold-Li model is also asymptotically interesting, because it generates
a discount function that starts in one for maturity zero and converges to zero in
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infinity. Such characteristic causes the obtained curve to conform better to the
rates of the longer maturity securities.

By adding a new curvature (U-shaped) to the equation (4) an extension of
the Diebold-Li model proposed by Almeida et al. (2007) is obtained. The new
parameter is important for the modeling of interest rate curves in highly volatile
markets, such as the Brazilian market, because it allows a greater flexibility of
the curve to capture more complex and non-linear movements resulting from the
excess volatility in the rates. The model relates continuously composed spot rates
with risk factors and loadings through the following function:

R (τ) = a1 + a2

(
1 − exp (−λ1τ)

λ1τ

)
+ a3

[(
1 − exp (−λ1τ)

λ1τ

)
− exp (−λ1τ)

]
+a4

[(
1 − exp (−λ2τ)

λ2τ

)
− exp (−λ2τ)

]
(5)

onde R (τ) is the continuously composed spot interest rate of a zero coupon bond
with maturity τ ;
a1, a2, a3 and a4 are risk factors regarding level, slope and curvature;
λ1 and λ2 are parameters of scale.

The parameters of scale govern the exponential decay: low values produce a
slow decay and better adjust the curve to the longer maturities.

Additionally, the λ’s govern the horizon period in which the loadings on a3 and
a4 reach their peak. Because both loadings are U-shaped, choosing the maturity
(τ) that maximizes the loading is equivalent to solving the

exp (−λτ) +
exp (−λτ)

λτ
− (1 − exp (−λτ))

(λτ)
2 = 0 (6)

The loadings on the coefficients a1, a2, a3 and a4 can be interpreted as the sen-
sitivity of the spot rate in relation to the variation of the latent factors, therefore,
can be obtained using the first derivative in relation to each of the risk factors:

∂R (τ)

∂a1
= 1

∂R (τ)

∂a2
=

(
1 − exp (−λ1τ)

λ1τ

)
∂R (τ)

∂a3
=

[(
1 − exp (−λ1τ)

λ1τ

)
− exp (−λ1τ)

]
(7)

∂R (τ)

∂a4
=

[(
1 − exp (−λ2τ)

λ2τ

)
− exp (−λ2τ)

]
The loadings as a function of the maturity can be seen in Figure 1. The loading

on a1 is constant and can be seen as a long-term equilibrium rate, because it does
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not decay to zero in maturities that tend to infinite. The loading on a2 starts
at one and quickly decays to zero, therefore, it has a greater influence on short-
term interest rates. The loadings on a3 and a4 start at zero, increase, and then
decay to zero, therefore they can been seen as influencing the medium-short and
medium-long parts of the curve, respectively. That is, they influence the curve’s
convexity. They are similar to the loadings obtained using Litterman-Scheinkman
(1991) principal components analysis, and therefore can be interpreted as: level,
slope, first curvature and second curvature, respectively.

Figure 1
Loadings of the real interest rate curve (NTN-B) with (λ1, λ2) = (0.3, 0.2)
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As it can be seen in the correlation matrix below, the factors of the models
are non-orthogonal, as in Scheinkman-Litterman, that is, they correlate to each
other.9 

1 0.09 -0.14 -0.35
1 -0.71 0.45

1 -0.83
1


9For statistical analysis of this section we have used the daily data of the Brazilian IPCA-

indexed securities known as NTN-B’s supplied by Andima. The data window goes from 10-
19-2004 to 5-15-2007, with a total of 644 observations. The parameters of scale used for the
construction of the curves were (λ1, λ2) = (0.3, 0.2).
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Notice, specifically, the high negative correlation between a3 and a4 and, also
the relation between a2 and a3. These facts can be better observed in Figure 2,
which shows the evolution of the factors through time.

It is possible to obtain the orthogonal structure of the factors that would be
generated by the interest rates using the principal components analysis directly on
the series of factors, because according to Almeida et al. (2003), the latent factors
obtained from the principal components analysis of the rates are merely a rotation
of the model’s own factors. Therefore, two steps are necessary to obtain the loading
of the factors that would be obtained by applying the principal components directly
on the rates:

(1) apply the principal components analysis directly on the parameters series of
the model and

(2) weigh the loadings of the model by the coefficient matrix found in step 1.

Step two is necessary because the coefficient matrix describes only the participa-
tion of each factor/parameter of the model for the construction of the principal
components. The following graph shows the sensitivity of the rate in regards to a
shock in the principal components.

Figure 2
Evolution of the latent factors in the real interest rate (NTN-B)
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To better interpret the orthogonal factors it is worth observing the coefficient
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matrix used in step 2 above:
-0.05 0.89 -0.34 0.3
0.52 0.25 0.79 0.21
-0.62 -0.16 0.28 0.71
0.57 -0.33 -0.43 0.61


This matrix shows how the orthogonal structure is built. The loading on

the first factors has an interpretation of level, because it affects the whole curve
positively, although the rates in the beginning of the curve are more affected, and
the effect lessens until maturity five. The loadings on the second factor also have an
interpretation of level, because it affects the whole curve positively, despite falling
monotonically until maturity five and presenting a slight increase after that. The
loading on the third factors has a clear interpretation of slope, because it decays
monotonically crossing the zero axes after six years (which represents a movement
of reduction in the interest rate curve slope). The loading on the last factor can be
clearly interpreted as curvature, because despite the fact that it positively affects
all maturities in the curve, the effect is much stronger in median maturities.

Using the principal component analysis is interesting because it allows us,
through the eigenvalues, to know how much each component explains of the total
movements of the curve. The first component is responsible for 58.68% of the total
movements of the curve; the second is responsible for 29.55%, while the third and
fourth explain 11.38% and 0.39%, respectively. It seems that the addition of the
fourth factor does not help explain the movements of the curve, but as discussed in
Almeida et al. (2007), the inclusion increases the ability to generate more volatile
and non-linear interest rate curves, by modifying the risk premium structure, and
it also improves the forecasting capacity of the model for shorter maturities in
comparison to the Diebold and Li model (which does not include this factor).

2.2 Pricing of fixed-income portfolios

The price of any security can be found by discounting its coupons by the rate
relative to the maturity of that cash flow:

Pj =

T j∑
ti

cj (ti) exp (−R (ti) × ti) (8)

where: Pj is the price of the security j of a portfolio.
cj(ti) is the coupon i of security j that will be paid on time ti.
i is the number of coupons of security j from today to maturity.
T j is the maturity of the security j.

Then, the price of a portfolio j = 1, 2, . . . , J securities with weighs,
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Figure 3
NTN-B orthogonal curve loadings
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ω1, ω2, . . . , ωj , so that
∑
j ωj ; can be described as:

P =
∑
j

ωj

T j∑
ti

cj (ti) exp (−R (ti) × ti)

=

MaxT j∑
ti

∑
j

ωjc
j (ti)

 exp (−R (ti) × ti)

=

MaxT j∑
ti

c (ti) exp (−R (ti) × ti) (9)

=

T∑
ti

c (ti) exp (−R (ti) × ti)

Therefore, any portfolio with J securities can be seen as one security with
distinct and non-uniform coupons throughout time.

The next section shows how the parameters of the model can be estimated
using a group of J securities in a given moment in time.
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3. Estimation

The first step is to estimate the coefficients at,1, at,2, at,3, at,4, λt,1, λt,2, for each
instant in time t, since we are interested in the evolution of the term structure
throughout time. Such dynamics can be seen as a panel with the following axes:
maturity of the securities and coupon payments, and time. The equation (5) can
be rewritten to incorporate the dynamic and statistical aspects of the model as
such:

Rt (τ) = at,1 + at,2

(
1 − exp (−λt,1τ)

λt,1τ

)
(10)

+at,3

[(
1 − exp (−λt,1τ)

λt,1τ

)
− exp (−λt,1τ)

]
+at,4

[(
1 − exp (−λt,2τ)

λt,2τ

)
− exp (−λt,2τ)

]
+ εt,τ

Let us assume that there are J securities available in the instant t. The estima-
tion of the coefficients is done by minimizing some loss function. Ideally, the loss
function should involve observed rates and rates from the model. However, this
is not always possible; for example, securities that do have coupons do not have
observable rates. In this case, the loss function must be built using the observed
price and the model price. Examples of this type of loss functions are: sum of the
price squared residuals, sum of the price absolute residuals, and weighted sum of
the price squared residuals, among others. This last approach is interesting be-
cause it allows us to give more weight to the most important securities in a specific
market in order to avoid distortions on the estimated interest rates caused by low
liquidity or maturity. Using the weighted sum of the price squared residuals as a
loss function, the parameters of the model are obtained by solving the following
optimization problem (non-linear generalized minimum squares).

Minat,1,at,2,at,3,at,4,λt,1,λt,2

J∑
j=1

wt,j
(
Pt,j − Pt,j

)2
(11)

Pt,j is the price of the security j given by equation (8) of the model in the period
of time t;
P t,j is the observed market price of the security j in the period of time t;
ωt,j is the weight which attributes the degree of importance of the security j in
the period of time t.

In order to use the model for fixed-income operations, it is necessary to es-
timate it daily, in a way it is possible to build a time series for the coefficients:
at,1, at,2, at,3, at,4, λt,1, λt,2, for each t = 1, 2, . . . , T .

It is important to mention that the scale parameters (λt,1, λt,2) are very insta-
ble, that is, the sequential estimation finds very different parameters throughout
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time. It is worth mentioning that depending of the application it is important
to fixate them in time (λt,1, λt,2) = (λ1, λ2) for every t. Some examples of ap-
plications when fixation is interesting are: forecasting of future rates, directional
trading of the interest rate curve, and for hedging of fixed-income portfolio.

When the rates are observable, as is the case of most interest rate derivatives
with liquidity in Brazil, it is interesting to use a loss function that deals with rates
instead of prices. There are two main reasons for this change in approach:

(1) to avoid distortions caused by the maturity of the instrument10 and

(2) if the parameters of scale are constant, the estimation of the model can be
done sequentially using linear regression or GLS, reducing the computational
cost and increasing reliability of the estimate (assurance of global optimum).

In this way the problem given in equation (11) is modified as it follows:

min
at,1,at,2,at,3,at,4,λt,1,λt,2

J∑
j=1

wt,j ( yt,j − yt,j)
2

(12)

If the parameters of scale are constant, the problem is reduced to:

min
at,1,at,2,at,3,at,4

J∑
j=1

wt,j ( yt,j − yt,j)
2

(13)

yt,j is the continuously composed annual rate of the security j given by the equation
(8) of the model in the period of time t;
yt,j is the continuously composed annual rate observed in the security market of
the security j in the period of time t.

For hedging applications, curve movement trading and construction of factors
we used the procedure given by equation (11), because those will be based on
the NTN-B’s. For comparison between breakeven inflation in the domestic public
debt securities (LTN/NTN-F and NTN=B) and in the interest rate derivatives
(DI-futuro and IPCA coupon) both types of loss function (11) and (13) will be
used.

3.1 Data

For the analysis carried out in the section Simulation we used the daily data
of the Brazilian IPCA-indexed public debt bonds, known as NTN-B’s. The data

10The prices of securities about to mature vary very little even when the rates present great
variations. For example, the price of a security with maturity of 1 day which pays one on the
maturity varies from 0.9996 to 0.9993 when the rates are 10%pa and 20%pa, respectively (under
the day counting rule: du/25). That is, an error of 1000 bps in rate is equivalent to an error of
0.0003 price monetary units.
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window goes from 10-19-2004 to 5-15-2007, in a total of 644 observations. Each
observation (day) of the sample has a group of NTN-B bonds with the follow-
ing characteristics: reference date, maturity, yield to maturity (expectation), PU
(bond price), VNA (current nominal value), Quotation (price of a security with
face value 1 and the same characteristics) and Coupon11 (as a percentage of face
value). The following tables show, respectively, the first and last observations of
the sample in the time dimension (dates 10-19-2004 and 05-15-2007):

Reference Maturity Yield to PU VNA Quotation Coupon
date maturity
15/05/2007 15/08/2008 7,5457 1.639,23949 1.644,04008 0,997080 6% aa
15/05/2007 15/05/2009 7,0148 1.614,67588 1.644,04008 0,982139 6% aa
15/05/2007 15/11/2009 6,9935 1.608,22138 1.644,04008 0,978213 6% aa
15/05/2007 15/08/2010 6,7352 1.634,65919 1.644,04008 0,994294 6% aa
15/05/2007 15/05/2011 6,5612 1.613,93935 1.644,04008 0,981691 6% aa
15/05/2007 15/08/2012 6,4645 1.635,78371 1.644,04008 0,994978 6% aa
15/05/2007 15/11/2013 6,4075 1.609,94927 1.644,04008 0,979264 6% aa
15/05/2007 15/05/2015 6,2645 1.618,87969 1.644,04008 0,984696 6% aa
15/05/2007 15/05/2017 6,2576 1.615,52914 1.644,04008 0,982658 6% aa
15/05/2007 15/03/2023 6,2425 1.623,93676 1.644,04008 0,987772 6% aa
15/05/2007 15/08/2024 6,2087 1.635,57492 1.644,04008 0,994851 6% aa
15/05/2007 15/11/2033 6,1880 1.608,25591 1.644,04008 0,978234 6% aa
15/05/2007 15/05/2035 6,1729 1.610,94062 1.644,04008 0,979867 6% aa
15/05/2007 15/05/2045 6,1488 1.613,02362 1.644,04008 0,981134 6% aa

Reference Maturity Yield to PU VNA Quotation Coupon
date maturity
19/10/2004 15/08/2006 8,6518 1.411,06971 1.456,57802 0,968757 6% aa
19/10/2004 15/05/2009 8,7596 1.352,09959 1.456,57802 0,928271 6% aa
19/10/2004 15/11/2013 8,7625 1.254,51531 1.456,57802 0,861276 6% aa
19/10/2004 15/05/2015 8,8025 1.226,95212 1.456,57802 0,842352 6% aa
19/10/2004 15/03/2023 8,8499 1.103,35491 1.456,57802 0,757498 6% aa
19/10/2004 15/08/2024 8,8684 1.097,32954 1.456,57802 0,753361 6% aa
19/10/2004 15/11/2033 8,8979 1.069,09695 1.456,57802 0,733979 6% aa
19/10/2004 15/05/2045 9,0997 1.022,68791 1.456,57802 0,702117 6% aa

It is important to point out that for a given period of time there is also ob-
servations in the cross-section dimension (bonds of different maturities); therefore
the sample has characteristics of a non-balanced panel, because observations in
the cross-section dimension vary with time.

Observe the column Expectation in both tables and notice how the real interest
rate curve changed the level. Take as an example the security with maturity in
the year 2045. Its rate in the beginning was 9.1%, while at the end of the sample

11NTN-B has a coupon of 6% pa with biannual payments calculated as:[
(1 + 6%)1/2 − 1

]
× V NA

.
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it had fallen to 6.15%.
To better understand the data it is worth mentioning that the NTN-B can be

decomposed in two parts:

(1) the part that accumulates the inflation rate daily (VNA) and

(2) the discount part (Quotation).

By multiplying these two parts we get the Bond Price (PU). More details on the
NTN-B can be found directly in the National Treasury website (www.tesourodireto
.gov.br).

For the analysis carried out in the section implicit expectations extractions,
we used the daily data of the fixed-income Brazilian public debt bonds, known as
LTN’s and NTN-F’s, and IPCA-indexed (NTN-B’s). Additionally, we used daily
data of the 1 day interbank rate future contracts (referred to as DI-Futuro) and
of the IPCA-DI swap contracts (registered at BM&F as SDL, and from now on
referred as IPCA coupon), both contracts are registered at the BM&FBOVESPA
(Securities, Commodities and Futures Exchange).

The first derivative contract is standardized, and, therefore, actively traded
at BM&FBOVESPA, its holder receives the amount of money resulting from the
difference between a fixed-income rate and the daily accumulated 1 day interbank
rate (DI); the IPCA coupon is registered and traded over the counter, and has
a much lower liquidity then DI-Futuro. Its holder received the amount of money
resulting from the difference between a real fixed-income rate plus accumulated
inflation and the daily accumulated 1 day interbank rate (DI).

The data for the section Extraction of implicit expectations ranges from 1-2-
2006 to 5-12-2007, with 21 observations in total. The reduced number of observa-
tions is caused by the IPCA coupon for two reasons:

(1) its moderate liquidity and

(2) the exclusion from the sample of days in which four or less contracts were
traded.

This exclusion is necessary because of the estimation process, to estimate 4 pa-
rameters a minimum of 4 observations are needed.

3.2 Parameter of scale

In the section Simulation the parameters of scale (λt,1, λt,2) were fixed in the
following manner. First, all parameters were estimated daily (with wt,j = 1,
for every t and every j) with a reduced window of 300 observations – from 3-
2-2006 to 5-15-2007 – and the average in time from (λt,1, λt,2) was calculated,
in a way that the values found for the NTN-b curve were (0.3, 0.2).12 Given

12This means that the highest points of both curves, according to the equation 6, are, respec-
tively, 5.98 and 8.96 years.
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the fixed values (λ1, λ2), the model was reestimated in the original window to
find (at,1, at,2, at,3, at,4). The idea behind using a reduced window to find the
parameters of scale is to try to give more weight to the more recent observations
in the time dimension in order to obtain a better characterization of the current
interest rate curve.

Alternative procedures can be used to fixate the parameters of scale. Diebold
and Li (2006) chose the parameter of scale in a way that the highest point of the
curve was the 30 month maturity. The choice of this maturity is done by taking
the average between two maturities usually chosen for this question (24 and 36
months). Another procedure would be to build a grid of possible parameters
of scale, estimate the model using the parameters of scale in each one of the
entries in the grid and choose the one with the lowest value for the loss function.
The problem of this last approach is that the parameters of scale could possibly
vary from one day to the next (every time the model was reestimated), making
the factors of the model, except for the first one, impossible to compare. This
last point can be understood by observing equation (7) and noticing that the
loadings of the model are affected by the parameters of scale. Despite the loss
in the intertemporal comparison dimension, the grid procedure allows for better
adjustment of the model to the observable data, that is, a lower loss function.

Any of the procedures described above can be used to build the time series of
the factors of any interest rate curve, and specially, the four types of interest rate
curves of the Brazilian public debt with the greatest liquidity:

(1) fixed-income (NTN-F and LTN),

(2) obtained by bonds that are indexed to the IPCA (NTN-B),

(3) obtained by the bonds that are indexed to the IGP-m (NTN-C) and

(4) the one obtained by the bonds indexed by exchange rate variations (NTN-D).

As well as for interest rate curves originated from derivative contracts: DI-Futuro,
IPCA coupon, IGP-m coupon and exchange rate coupon, among others.

For the section Extraction of implicit expectations, we have chosen to use the
grid procedure for two reasons:

(1) to illustrate the approach and

(2) we believe that the adjustment of the model to the data for this analysis is
more important than the comparability of the factors through time.

3.3 Results of the estimation

To illustrate the dynamic of factors, the following graph shows the time series
of the four latent factors of the NTN-B curve when (λt,1, λt,2) are fixed at (0.3,
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Figure 4
Evolution of factors for NTN-B curve
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0.2). Observe in Figure 4 the inverse behavior of the convexities (long and short),
as well as the declining tendency of the first factor (level). The fact that the
level of the real interest rate curve is declining with time can be understood as a
reflex of the macroeconomic policies adopted in the recent past: fiscal adjustment
(primary surplus target), flexible exchange rate, inflation target regime, change in
the government debt profile, among others.

Observe the shape of the real interest rate curve implied from the NTN-B’s
of the last day of the sample in Figure 5. Notice that the curve clearly embeds
the expectation of the market agents of continuing decline in the Brazilian real
interest rate.

It is important to highlight that, given the characteristics of the NTN-B bonds
of having intermediate coupons; it is not possible to graphically compare the curve
in Figure 5 to the market curve, because, as discussed in the Introduction, the
interest rates in that market are unobservable. The solution to know how well
the curve is adjusted to the dada is through the residuals from some type of loss
function already described in the beginning of the Estimation section. Figure 6
describes the evolution of the percentage error of security-j price in the period of
time t. This is defined as:

ept,j =

(
Pt,j − Pt,j

)
Pt,j

=
et,τj
Pt,j

(14)
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where τj is the maturity of the security j and et,τj is the pricing error of the
security with maturity τj .

Figure 5
Real interest rate curve, on 05-15-2007, implied from the NTN-B’s

0 5 10 15 20 25 30 35 40 45
0.06

0.065

0.07

0.075

0.08

0.085

Notice that the pricing errors in the model are, at most 2%, despite being lower
than 1% for the largest part of the sample (and most of the securities).

Given the time factors series it is possible to build a tri-dimensional graph –
Figure 7 – of the evolution of the NTN-B’s interest rate curve.

Notice that the level of the curve falls with time and the slope of the curve at
the beginning of the sample is positive, it inverts after a few periods and remains
negative until the end of the sample. This movement can be interpreted as a
gradual reduction of the real interest rate and the expectations of the future real
interest rate.

4. Model analysis: hedging and leveraging

Let P be a portfolio of J securities given by:

P =

T∑
ti

c (ti) exp (−R (ti) × ti) (15)
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4.1 First order conditions

Because the rate given by any parametric model can be described as a function
of the risk factors (coefficients), R (τ) = R (τ, a1, a2, a3, a4) it is easy to see that
the sensitivity in the value of a portfolio generated by (infinitesimal) changes in
the coefficients is given by:

∂P

∂a1
=

T∑
ti

−tic (ti) exp (−R (ti) × ti)
∂R (ti)

∂a1

∂P

∂a2
=

T∑
ti

−tic (ti) exp (−R (ti) × ti)
∂R (ti)

∂a2
(16)

∂P

∂a3
=

T∑
ti

−tic (ti) exp (−R (ti) × ti)
∂R (ti)

∂a3

∂P

∂a4
=

T∑
ti

−tic (ti) exp (−R (ti) × ti)
∂R (ti)

∂a4

where
(
∂R(ti)
∂a1

, ∂R(ti)
∂a2

, ∂R(ti)
∂a3

, ∂R(ti)
∂a4

)
is given by (7).

These derivatives are named duration, because they inform how much the port-
folio varies financially with increases of one unit in each of the risk factors. It is
important to point out that these derivatives do depend on the loadings(

∂R (ti)

∂a1
,
∂R (ti)

∂a2
,
∂R (ti)

∂a3
,
∂R (ti)

∂a4

)
evaluated in each maturity ti, that is on the interest rate curve obtained through
the parametric model R(ti).

A simple Taylor expansion of first order around the initial parameters shows
how the value of a portfolio is related to the duration.

∆P = P (a) − P (a0) = DaP · (∆a) + erro (o) (17)

where,
P (a) is the price of the portfolio when the factors are given by the vector a;

DaP is the gradient vector
(
∂P
∂a1

, ∂P∂a2 ,
∂P
∂a3

, ∂P∂a4

)
;

(∆) a is the difference vector of the parameters(a− a0);
error (o) is the approximation error for orders higher than 1.
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Figure 6
Evolution of percentage errors: Difference between market price and model price

divided by model price

Figure 7
Evolution of NTN-B Curve
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4.2 Hedging a single risk factor

Suppose that an agent holds a portfolio P for which he or she would like to
eliminate the risk generated by variations in the risk factors ai, i = 1, 2, 3, 4.

To do that, the agent needs to build a portfolio G composed by 1 unit of P
and φ units of an instrument H (a security or a derivative).

That is,
G = P + φH (18)

The amount φ must be such those small movements in do not cause profits or
losses in G:

∂G

∂ai
=
∂P

∂ai
+ φ

∂H

∂ai
= 0 (19)

φ = −
∂P
∂ai
∂H
∂ai

(20)

where φH is the financial amount on the instrument needed to hedge the portfolio
for variations in a1.

4.3 Leveraging a single risk factor

The same analysis can be done if the agent desires to increase the exposition
of P to the risk factor ai, for example, by multiplying it by x.

Similarly to the previous case, an agent needs to build a portfolio G = P +φH
so that:

φ =
∂P
∂ai
∂H
∂ai

(x− 1) (21)

4.4 Hedging or leveraging: multiple risk factors

Suppose there are N risk factors. It is possible to hedge one factor, while the
exposure to the others is increased, or to increase the exposure of one factor while
leaving the exposure to the others approximately fixed. For example, to trade the
level of a curve and at the same time neutralizes the exposure to changes in slope
and convexity of the curve. Such operations can be interesting to take advantage
of a specific movement in the market that the manager expects will come in a few
periods of time. For example, recently in Brazil, there was a pronounced decrease
in the domestic yield rates of NTN-B’s.

The analysis used before can be done in this more general case. To this end,
all that is needed is to observe the following rule of thumb: the number of instru-
ments must be the same as the number of factors one wishes to trade (hedging
or leveraging). Therefore, if there are N risk factors, then N instruments are
necessary.

Let H1, H2, ...,HN be instruments. And suppose that the agent has a portfolio
P and wants to increase the exposure to factor 1 x1 times, factor 2 x2 times, . . .,
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and factor N xN times. To do so, one needs to build the augmented portfolio
G = P + φ1H1 + φ2H2 + ...+ φNHN so that:

∂G

∂ai
=
∂P

∂ai
+ φ1

∂H1

∂ai
+ φ2

∂H2

∂ai
+ ...+ φN

∂HN

∂ai
=
∂P

∂ai
xi (22)

for every i = 1, 2, . . . , N
or in matrix notation

(DaG)
T

= (DaP )
T

+ (DaH)
T
φ = diag

[
(DaP )

T
]
x (23)

Leveraging and hedging consist in solving a system of linear equations, where
the solution is the vector of amount of instruments to be purchased/sold.

φ =
[
(DaH)

T
]−1

diag
[
(DaP )

T
]

(x− ι) (24)

The matrix (DaH)
T

must be non-singular so that its inverse
[
(DaH)

T
]−1

is

well defined. Usually, in empirical applications, the matrix (DaH)
T

is always
invertible.

If x = 0, the case of complete immunization, then the solution is reduced to:

φ = −
[
(DaH)

T
]−1

(DaP )
T

(25)

Another very useful concept to operate the curve movements in a way that the
initial investment is zero is the self-financing portfolio. That is, buying and selling
instruments so that your portfolio (of instruments) has value zero.

φ ·H = 0 (26)

To incorporate this restriction in the set of equations above it is necessary to
include one more financial instrument. In this manner, the final system will have
only a unique solution (given that the equations are not linearly dependents).

5. Simulation

In this section we present two examples of the developed methodology:

(1) directional level trading and

(2) slope directional trading with immunization of the other curve movements, as
well as a comparison with several operational procedures created using the
duration and convexity approach.
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The convexity and duration approach is based on the Taylor approximation of first
and second order, respectively, for the price of a fixed-income portfolio in relation
to the yields to maturity (YTM) of each instrument in the portfolio. Two steps
are necessary to immunize a portfolio based in duration and convexity:

(1) calculate the first and second order derivatives of the prices of the securities
in the portfolio in relation to their yields to maturity;

(2) build a portfolio (φ) so that the first and second derivatives such that the
yields are zero.

Usually, it is imposed by hypothesis that the crossed derivatives are negligible, and
therefore, zero. For more details, see Fabozzi (2001) and Martellini et al. (2003).

This section presents a new contribution to the literature by presenting two
definitions of slope movements to be used with the duration/convexity approach,
namely:

(1) The inverse of duration, “D × 1/D”, and

(2) Svensson Loading, “D × SV L2”.

5.1 Example 1: Level directional trading

Let us assume that on 07-25-2006 it is expected that the level of the NTN-
B curve will rise. Suppose that there are only two IPCA-indexed bonds in the
Brazilian public securities market:

1. NTN-B with short maturity 08-15-2010, biannual coupon payments of 6%pa
and price and yields given by (P1, y1) = (0.8929, 0.0979);

2. NTN-B with long maturity 05-15-2045, biannual coupon payment of 6%pa and
price and yield given by (P2, y2) = (0.7484, 0.0802).

The estimated coefficients represent the different movements of the interest
rate curve present the following values:

a0 = (a1, a2, a3, a4) = (0.075, 0.0036,−0.1226, 0.1781)

To calculate the sensitivities, suppose that the face value of the bond is 1.13

Therefore, the price and duration in relation to the a1 factor and the yields (y1, y2)

13To obtain the real price and sensitivity values we must multiply the price and duration
vectors by the Updated Nominal Values (UMV) in a way that the ratio of securities does not
change.
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are given by:

(P1, P2) = (0.8929, 0.7484)(
∂P1

∂a1
,
∂P2

∂a1

)
= (−3.1291,−9.9610)(

∂P1

∂y1
,
∂P2

∂y2

)
= (−3.1313,−9.2718)

Given the expectation of increase in the level factor, assume a self-financing di-
rectional position bought in level in such way that 1 unit of increase in a1 increases
the value of the portfolio in, for example, 1MM. Two instruments are needed to
carry out the operation: one to leverage the level of the curve and another to build
the self-financing portfolio.

5.1.1 Svensson Methodology

The solution to the problem is buying the short security and selling the long
one in amounts (φ1, φ2) given by the system bellow:

(φ1, φ2) ·
(
∂P1

∂a1
,
∂P2

∂a1

)
= 1MM

(φ1, φ2) · (P1, P2) = 0 (27)

which has the solution:

φ =

[
∂P1

∂a1
∂P2

∂a1
P1 P2

]−1 [
1MM

0

]
=

[
0.1142MM
−0.1362MM

]
(28)

Therefore, to carry out the trading is necessary to buy 0.1142MM units of the
security with maturity in 2010 for each sale of 0.1362MM units of the security
with maturity in 2045.

The absolute financial value of the portfolio is:

abs (φ) · (P1, P2) = 203, 975.50

After 1 week (5 business days) the operations is undone with the new interest
rate curve parameters, price of the securities and yields presenting the following
values:

a1 = (0.085,−0.0012,−0.1326, 0.1826) (29)

(P1, P2) = (0.8776, 0.6831) (30)

(y1, y2) = (0.1034, 0.0880) (31)

To understand what happened to the curve when the coefficient changes from
a0 to a1, movement by movement, see Figure (8).
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The result forecasted by the model for an increase in level of 100bps is a profit
of approximately 10,000, while the effective result (recalculated prices) is a profit
of 7,157.16. There are two reasons for the large difference between the two results:

(1) the sale of the level is done in first order – which is not very important, as we
will show – and

(2) other risk factors were not considered in the construction of the operation.

To demonstrate that, let us suppose that the coefficients did not change, then
the effective result would be a profit of 8,668.71, which is much closer to the
approximate profit obtained by duration.

5.1.2 Duration methodology

If instead of using the Svensson model, the duration was used to operate the
level, the resulting portfolio would be:

φ =

[
∂P1

∂y1
∂P2

∂y2

P1 P2

]−1 [
1MM

0

]
=

[
0.1260MM
−0.1504MM

]
With the absolute financial value of the portfolio:

abs (φ) · (P1, P2) = 225, 180.50

The result predicted by the model for an increase in level of 100 bps is a profit of
approximately 11,051.61, while the effective result (recalculated prices) is a profit
of 7,901.21. If the coefficients had not changed (only a1), the effective result would
have been 9,569.89.

The Svensson model (SV) forecasted and realized results and that of the dura-
tion model (D) are shown in Figure 9. The continuous black line shows the results
for variations of ∆a1, the red dashed line shows the results for coefficients equal to
a0 and variations of ∆a1 and the green dotted line shows the results for coefficients
equal to a1 and variations of ∆a1. The graph on the left shows the forecasted and
realized results when the operation is done using the Svensson model. The graph
on the right shows the same results for duration-based level operation.

As it can be seen in Figure 9, for both methodologies – SV and D –, the
forecasted result is more accurate the smaller the shift in a1 (red dashed line).
Notice the influence in the result when the coefficients (a2, a3, a4) are different
than those in the beginning of the operation (green dotted line). This happens
because the portfolio is not immunized against undesirable risks sources, that is,
against variations in the factors (a2, a3, a4) .. The next example shows how to
operate the slope without exposing the portfolio to other risk sources.
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Figure 8
Step by step curve movement, from a0 to a1

5.2 Example 2: Slope trading neutralizing other sources of risk

Let us suppose that on 07-25-2006 it is expected an increase in the NTN-B
curve slope. Suppose that there are only five Brazilian IPCA-indexed bonds in
the Brazilian public securities market:

1. NTN-B with maturity 08-15-2008, biannual payment of coupons of 6%pa (P1);

2. NTN-B with maturity 08-15-2010, biannual payment of coupons 6%pa (P2);

3. NTN-B with maturity 05-15-2015, biannual payment of coupons 6%pa (P3);

4. NTN-B with maturity 08-15-2024, biannual payment of coupons 6%pa (P4);

5. NTN-B with maturity 05-15-2045, biannual payment of coupons 6%pa (P5).

The coefficients estimated using (λ1, λ2) = (0.3, 0.2) present the following val-
ues:

a0 = (a1, a2, a3, a4) = (0.075, 0.0036,−0.1226, 0.1781)

To calculate the sensitivities
(
∂Pi

∂ai
, ∂Pi

∂yi
, 0.5∂2Pi

∂y2i

)
, preços (Pi), prices (Pi) and

durations (Di), suppose that the face value of the securities is 1. Therefore,

(P1, P2, P3, P4, P5) = (0.9575, 0.8929, 0.8104, 0.7979, 0.7484)
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Figure 9
Forecasted impacts in the operation procedure “SV” and “D” for different ∆a1

(continuous line) and impacts for different ∆a1 regarding coefficients, except for a1, do
not vary (dashed line) and when the coefficients do vary (dotted line)
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(y1, y2, y3, y4, y5) = (0.0952, 0.0979, 0.0913, 0.0824, 0.0802)

(D1, D2, D3, D4, D5) = (1.8942, 3.5067, 6.6127, 9.9611, 12.3885)

−
(
∂P1

∂a1
,
∂P2

∂a1
,
∂P3

∂a1
,
∂P4

∂a1
,
∂P5

∂a1

)
= (1.8133, 3.1291, 5.3786, 8.1927, 9.9610)

−
(
∂P1

∂a2
,
∂P2

∂a2
,
∂P3

∂a2
,
∂P4

∂a2
,
∂P5

∂a2

)
= (1.3646, 1.8600, 2.1166, 2.1147, 2.0027)

−
(
∂P1

∂a3
,
∂P2

∂a3
,
∂P3

∂a3
,
∂P4

∂a3
,
∂P5

∂a3

)
= (0.3669, 0.8602, 1.4992, 1.7116, 1.6152)

−
(
∂P1

∂a4
,
∂P2

∂a4
,
∂P3

∂a4
,
∂P4

∂a4
,
∂P5

∂a4

)
= (0.2782, 0.7281, 1.5439, 2.0831, 2.0250)

−
(
∂P1

∂y1
,
∂P2

∂y2
,
∂P3

∂y3
,
∂P4

∂y4
,
∂P5

∂y5

)
= (1.8138, 3.1313, 5.3590, 7.9480, 9.2718)

0.5
(
∂2P1

∂y21
, ∂2P2

∂y22
, ∂2P3

∂y23
, ∂2P4

∂y24
, ∂2P5

∂y25

)
=

(1.8129, 6.0532, 21.2382, 57.0224, 102.8207)

5.2.1 Svensson Model

To take advantage of the expected movement the investor should build a di-
rectional self-financing position bought on slope in a way that 1 unit of variation
in a2 increases the value of the portfolio in 1MM.

To carry out this operation five instruments are necessary: one to leverage the
curve’s slope, one to build a self-financing portfolio, and the others to immunize
the portfolio against variations in the coefficients (a1, a3, a4).

The problem consists in solving the following system of equations:

(DaP )
T
φ =


0

1MM
0
0

 (32)

φ · P = 0

The solution is given by:

φ =

[
(DaP )

T

PT

]−1


0

1MM
0
0
0

 =


4.8318MM
−9.6520MM
8.6011MM
−6.1074MM
2.5313MM

 (33)
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Therefore, to carry out the operation it is necessary to buy the vector in quan-
tities

(4.8318,−9.6520, 8.6011,−6.1074, 2.5313)MM

of securities (1, 2, 3, 4, 5).
Given the quantity vector φ, build a portfolio with absolute financing value of:

abs (φ) · P = 26, 983, 773.00

and a 5-day carry of −573.60.
After one week (five business days) the operation is undone and the new coef-

ficients and prices are:

a1 = (0.0774, 0.0136,−0.1326, 0.1826)

(P1, P2, P3, P4, P5) = (0.9415, 0.8690, 0.7805, 0.7643, 0.7121)

(y1, y2, y3, y4, y5) = (0.1052, 0.1063, 0.0972, 0.0870, 0.0845)

The result predicted by the model is a profit of 10, 000.00 which is very close
to the effective result of a profit of 9, 709.59.

Let us assume that the coefficients did not change, then the effective result is
a profit of 9, 324.44. At first it seems odd that the result with varying coefficients
is closer to the predicted profit. This happens because in this forecast we do not
include the 5-day carry of −573.60. When the carry is included in the forecast, the
result is a predicted profit of 9, 426.30, much closer to the results without coefficient
variation. The difference between the effective results can be explained by the fact
that the coefficient a1, representing the movement of level, varies +24bps and the
portfolio has more short then long positions (negative carry). Because the hedge
is made in first order, a large increase in the level coefficient affects the final value
of the portfolio, even when the loading of this factor is zero. In this case, the final
value of the portfolio will be greater due to an increase in the interest rate curve
level.

5.2.2 Duration model

Definition of slope in a Duration model To trade slope using the Duration
model, the investor is faced with a problem: How to define a movement in slope
using a duration model? Notice that going from duration to level is relatively easy,
but going from duration to slope is a bit more complex. Generally speaking, the
models in which the slope is well defined, it is seen as a bear-flattening movement,
in which the short rates increase more than the long term ones. Using this fact,
the present paper defines slope in two distinct ways:

(1) slope as the inverse of duration (D × 1/D) and

(2) slope as Svensson loading as a function of duration (D × SV L2).
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1. Slope movement as the inverse of duration (D × 1/D): by definition a shock
in the slope movement causes the rates to vary in 1/D + 0.1. For the five
securities in this section this means variations of 1/D + 0.1 = 1/
(1.8942, 3.5067, 6.6127, 9.9611, 12.2885) +0.1. The addition of the 0.1 is nec-
essary to avoid matrix inversion problems in the procedure to build a portfolio
that takes advantage of the increase of slope caused by linear dependencies
between the matrix lines.

2. Slope movement as Svensson loading in the duration. (D × SV L2): by defi-

nition a shock in the slope movement causes the rates to vary ∂R(τ)
∂a2

in which
τ = D (duration of the security) – see 7.

Operating the slope in a Duration model To improve the comparability
of the duration with the Svensson model this paper also shows how to trade the
slope through duration by neutralizing the level movements ( δPδy ) and the convexity

movements ( δ2Pδy2 ). The paper presents a total of four procedures to trade slope
based on duration, as defined below:

1. D× 1/D: Movement of slope as the inverse of duration, without immunization
against first and second orders variations in the yield, using securities 1 and 5
and generating 1MM profit with the increase of 1 in the slope.

2. D × SV L2: Movement of slope as Svensson loading in the duration, without
immunizations against first and second orders variations in the yield, using
securities 1 and 5 and generating a profit of 1MM with an increase of 1 in the
slope.

3. D×SV L2+Dh: movement of slope as Svensson loading in the duration, with
immunization against first order variation in the yield, using securities 1, 3 and
5 and generating a profit of 1MM with an increase of 1 in the slope.

4. D×SV L2+Dh+Ch: Movement of slope as Svensson loading in the duration,
with immunization against first and second order variations in the yield, using
securities 1, 3, 4 and 5 and generating a profit of 1MM with an increase of 1 in
the slope.

D × 1/D: Movement of slope as the inverse of duration, without
immunization against first and second orders variations in the yield The
creation of this operations is based on the following premises:

(1) securities 1 (2008) and 5 (2045) will be used;

(2) the portfolio is self-financing, and

(3) a profit of 1MM with a shock of one unit in the slope.
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The result of the procedure is a portfolio with amounts (φ1, φ5) = (0.9951,−
1.2732)MM , and an absolute financial value of 1, 905, 800.00 and a 5-day carry of
412.82.

D × SV L2: movement of slope as Svensson loading in the duration,
without immunization against first and second order variations in the
yield The creation of this operation is based on the following premises:

(1) the securities used will be 1 (2008), and 5 (2045);

(2) the portfolio is self-financing;

(3) a profit of 1MM with a shock of 1 unit in the slope.

The result of this procedure is a portfolio with amounts (φ1, φ5) = (0.5778,−
0.7393)MM , an absolute financial value of 1, 106, 628.00 and a 5-day carry of
239.71.

D × SV L2 + Dh: movement of slope as Svensson loading in the du-
ration, with immunization against first order variation in the yield The
creation of this operation is based on the following premises:

(1) the securities used will be 1 (2008), 3 (2015) and 5 (2045);

(2) the portfolio is self-financing;

(3) a profit of 1MM with a shock of 1 unit in the slope and;

(4) Modified Duration of the portfolio is equal to zero.

The result of this procedure is a portfolio with amounts (φ1, φ3, φ5) =
(0.9311,− 1.9990, 0.9732)MM , an absolute financial value of 3, 240, 081.00 and a
5-day carry of 369.16.

D× SV L2 +Dh+Ch: Movement of slope as Svensson loading in the
duration, with immunization against first and second order variations
in the yield The creation of this operation is based on the following premises:

(1) securities 1 (2008), 3 (2005), 4 (2024) and 5 (2045) will be used;

(2) the portfolio is self-financing;

(3) a profit of 1MM with a shock of 1 unit in the slope;

(4) first order variation in the portfolio (Modified Duration) equal to zero; and

(5) second order variation in the portfolio (Convexity) equal zero.

The result of this procedure is a portfolio with amounts (φ1, φ3, φ4, φ5) =
(1.1964,−4.6275, 4.9757,−1.8247)MM , an absolute financial value of 10, 231, 736.
00 and a 5-day carry of 305.23.
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The predicted and realized results of the Svenssson model (SV) and of the
four duration procedures are shown in pictures 10, 11, and 12. The continuous
black line represents the forecast result for variations of ∆a2, the red dashed line
represents the result with the coefficients equal to a0 and variations of ∆a2 and
the green dotted line represents the results with the coefficients equal to a1 and
variations ∆a2.

Notice that for the procedure SV (10), the approximated result of the operation
is practically the same as the effective result, regardless of the variation in the
coefficients. This shows that, despite the transaction costs, fixating the movements
that are not being traded is greatly advantageous, because it increases the precision
of the expected result of the operation. Additionally, it shows the power of first
order hedging in SV. Despite the hedging being in first order the approximated
and the effective results are perfectly adjusted. For procedures D × 1/D,D ×
SV L2, D×SV L2 +Dh, and D×SV L2 +Dh+Ch (see 10, 11, 12), notice that
the approximated and the effective results are perfectly adjusted only for small
variations of , and while the other coefficients do not vary (red dashed line).

Figure 10
Forecasted impacts in the procedures SV and D × 1/D for different ∆a2 (solid line)
and impacts for different ∆a2 when coefficients, except for ∆a2, do not vary (dashed

line) and when the coefficients do vary (dotted line)

When the other coefficients vary the result is significantly different from the
approximate result, regardless of the improvement in slope definition (from D ×
1/DtoDxSV L2), immunization against rates variations in first order (from D ×
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Figure 11
Forecasted impacts in procedures “D × SV L2” and “D × SV L2+Dh” for different

∆a2 (solid line) and impacts for different ∆a2 when coefficients, except for a2, do not
vary (dashed line) and when coefficients do vary (dotted line)

Figure 12
Forecast impacts for procedures “D × SV L2 +Dh+ Ch” for different ∆a2 (solid line)
and impacts for different a2 when coefficients, except for , do not vary (dashed line) and

when coefficients do vary (dotted line)
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SV L2toD×SV L2 +Dh) and immunization against rates variations in first and
second orders (from D × SV L2 + DhtoD × SV L2 + Dh + Ch). Notice that
as the operation procedures via duration become more advanced, the greater the
absolute financial value of the portfolio (from approximately 1MM to 10MM). An
advantage of the duration model is that, even in the most complex procedure
“D×SV L2+Dh+Ch”, the absolute financial value is significantly lower than in
the Svensson model. Another interesting aspect is that all portfolios created using
the duration model have a carry of 5 days positive, while SV does not. Which
means that if the market goes sideways (or experiences low volatility) during the
operation period, it would be more advantageous to use the duration model instead
of the SV model.

The biggest disadvantage of the Svensson model is that, to build the operation,
a relative large absolute financial value might be necessary (despite the portfolio
being self-financing), since the hedge is the result of a system of equations. On
the other hand, for this very reason, the forecasted result is more precise than in
procedures which use less securities and a lower absolute financial value.

The criticism to all the procedures described is that to build an operation it is
necessary to build a portfolio with short positions for some NTN-B of different the
maturities. In practice, a selling position is possible, but the cost of the transaction
can be huge.

The criticism of the high absolute financial value and the short position of
the portfolio can be easily solved. The first with a credit restriction and the
second with a modification in the hedging approach so that it is the solution to an
optimization problem with restrictions to short selling. The interesting aspect of
this approach is that all securities used to estimate the curve can be used in the
construction of the hedge/operation.

5.3 Example 3: Factor replicating portfolios

The objective of this example is to show that it is possible to replicate a latent
factor using a set of fixed-income securities available in the market. The solution
of this problem is important, because it allows us to answer the key question: what
is the price of the latent factor? Therefore, if it is possible to build a portfolio
composed of observable assets in such way that every state of nature of their
payments be equal to that of the latent factor, then, under non-arbitrage, the
price of both strategies, the portfolio and the latent factor, must be the same.

Let us assume an economy identical to the previous one – same securities,
dates, parameters and, therefore, the same curve. Then the coefficients, price of
securities and duration, are given by the following values:

(a1, a2, a3, a4) = (0.0733, 0.0014, 0.1896,−0.1252)
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(P1, P2, P3, P4, P5) = (0.9603, 0.8952, 0.8130, 0.8048, 0.7589)

−
(
∂P1

∂a1
,
∂P2

∂a1
,
∂P3

∂a1
,
∂P4

∂a1
,
∂P5

∂a1

)
= (1.8226, 3.1412, 5.4012, 8.3013, 10.2448)

−
(
∂P1

∂a2
,
∂P2

∂a2
,
∂P3

∂a2
,
∂P4

∂a2
,
∂P5

∂a2

)
= (1.3709, 1.8664, 2.1247, 2.1371, 2.0373)

−
(
∂P1

∂a3
,
∂P2

∂a3
,
∂P3

∂a3
,
∂P4

∂a3
,
∂P5

∂a3

)
= (0.3693, 0.8638, 1.5053, 1.7323, 1.6483)

−
(
∂P1

∂a4
,
∂P2

∂a4
,
∂P3

∂a4
,
∂P4

∂a4
,
∂P5

∂a4

)
= (0.2800, 0.7313, 1.5505, 2.1100, 0.0718)

The solution to the problem is to build portfolios i = 1, 2, 3, 4; in such way
that one unit of variation in a1 increases the value of the portfolio i in 1 financial
unit. Because just four instruments are enough to carry out this operation, with
no loss of generality, remove the first security – the one with the shorter maturity
(2008). To build the i portfolios that replicate the i factors it is necessary to solve
the linear system:

(DaP )
T
φ = I4 (34)

onde DaP is the matrix of derivatives of the prices of the four chosen securities in
relation to the factors;

I4 is the identity matrix (4×4)
The solution is given by:

φ =
[
(DaP )

T
]−1

I4 =


0.0721 −2.1634 5.3773 −2.5073
−0.2077 2.7196 −11.4152 7.4346
0.6736 −2.4079 10.9315 −9.6599
−0.5560 1.1806 −4.4882 4.6765

 (35)

Each column i represents the amount of the 4 securities that an agent must
buy to replicate the i-th factor.

The price of the factor i is given by the linear combination of the prices of the
securities weighted by the values of the i-th column of the matrix φ. Or, in a more
general description, given by:

Pfactors = PT × φ (36)

In the problem above, Pfactors is equal to the vector:

P 1
factors = (0.0158,−0.7676, 0.9248,−0.4255)

where each entry i of the vector represents the price of the i-th vector.
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Figure 13
Evolution in the difference in price of the portfolios
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It is worth mentioning that if a different group of securities is used, the price
vector will change. The price vector of the factors built by a different group of
securities is:

P 2
factors = (0.9244,−2.9127, 11.4898,−10.9082)

This large difference exists because we do not use the whole yield curve to
build the replicated factors. That is, instead of using all securities available in the
market, we have used only four securities of the curve.

At first, when buying the first portfolio that replicates factor 1 and selling the
second portfolio that also replicates factor 1 there is a profit of (0.9244 − 0.0158)
and the investor is free from the risk in infinitesimal movements in all factors,
including the first. Unfortunately this is not an arbitrage opportunity, because
in the future it will be necessary to sell this portfolio, and when doing so all the
profit from the beginning of the operation will, in average, be lost in the end.

To illustrate this last point, one of the factors was replicated with two portfolios
of four securities each – for each one of the factors the same portfolio was used –
to obtain two price vectors (P 1 and P 2) – one for each factor. Figure 13 shows the
evolution of the difference of the price vector of these portfolios (P 1−P 2) without
rebalancing in each period.

Despite the fact that the prices of the latent factors using the observable assets
are dependent on the portfolio, the behavior of the price is very similar for both
portfolios. Figures 14, 15, 16 and 17 show the evolution of prices of factors i =
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1, 2, 3, 4; respectively.
Observe that the prices of the implicit factors in portfolio 2 always have a

larger absolute value. This is due to the fact that their duration is longer than
portfolio 1. Another relevant aspect is the spikes in the price of the factors. Bear
in mind that the securities pay coupons on different dates. Therefore, the spikes
are the result of coupons being paid by only a part of the securities in the factor
replicating portfolio.

Figure 14
Factor a1 price evolution
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The fact that the price of some factors is negative means that the agents are
averse to these negative price factors. In other words, they expect the behavior
of the factors to be the opposite. Notice that the price of the second curvature is
negative, while in the second one it is positive, that is, the curvature movements
cancel each other out. On the other hand, the fact that the slope has negative
price throughout the sample suggests that the agents expected an increase in the
slope of the curve. This is consistent with the empirical evidence of the decrease
in the real interest rate in the Brazilian economy.

Additionally, a decrease in the price of the slope throughout the period is ob-
served (that is, it becomes more negative), indicating that the agents were reeval-
uating the probability of the slope increasing and, ultimately, inverting (because,
in the beginning of the exercise the curve is decreasing and convex).
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Figure 15
Factor a2 price evolution
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Figure 16
Factor a3 price evolution
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Figure 17
Factor a4 price evolution
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6. 6 Extraction of the implicit expectations

This section presents the methodology for the construction of inflation curves
(IPCA) implicit in the derivatives and public bonds markets. After its construc-
tion, a comparison between the expectations produced in both markets is carried
out.

Let Rnomt (τ) be the nominal interest rate and Rrealt (τ) the real interest rate.
According to Fisher rule, the inflation rate is the nominal interest rate minus the
real interest rate:

Rinf
t (τ) = Rnomt (τ) −Rrealt (τ)

where τ is the maturity and t represents the instant in time.
In the Brazilian case, the inflation curve can be built in two ways: from a group

of bonds created by the fixed bonds (LTNs and NTN-Fs), and from inflation-
indexed bonds (NTN-Bs or NTN-Cs) and from the group of two types of deriva-
tives, DI-Futurp and IPCA coupon (SDL) or IGPM coupon (SDM). It is possible
to decompose a curve, be it the inflation or the interest rate curve, into two com-
ponents: expectation of future rates and risk premium. The first explains the
largest part of variations in the short end of the term structure, while the second
explains the largest part of variations in the long part of the curve. Therefore, for
shorter maturities, the difference between the curves, nominal and real, seems a
good measure of inflation expectation, since the interference of the risk premium
is small.

The next step is choosing the method to estimate the real and nominal interest
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rate curves. These depend only on the group of observable variables, as discussed
in the estimation section. For example, the NTN-Bs do not have rates that are
directly observable, only yield to maturities and prices. In this case, the method
chosen must be price based.

Another concern regarding the estimation procedure is knowing whether the
model proposed for the construction of the curve adjusts well to the data. In this
case the focus should be the boundaries of the curve: the short and long end. The
first is, in general, more problematic.

To insure good data adjustment of the model, especially for short maturities, we
allow an increase in the group of securities to include instruments with maturities of
one day. For the nominal curves we used the Selic overnight rate or the interbank
overnight rate (DI), and for the real curves we used the difference between the
nominal one day rate and the projected inflation released by Anbima.14

6.1 Estimation of the curves using the grid methodology

To estimate the curves we used a grid for the parameters of scale (as described
in the estimation section). Each parameter of scale can assume 31 values,15 and
for each pair of values, the model of the term structure was estimated for the four
curves in each period of time. For the two term structures of the securities market
(real and nominal) the price loss function (11) was used, because the rates are
unobservable. For the derivatives market term structure, the rate loss function
(13) was used.

Observe that the rate loss function, for a given pair of parameters of scale in the
grid, is linear in the parameters, which makes it possible to use linear techniques
to find its solution. The price loss function, on the other hand, is completely non-
linear in the parameters and must be solved using non-linear procedures to find
the factors. Both optimizations were solved with a condition of positivity for the
rate level factor.

Once the factors were optimized, the criteria for choosing the pair of scale
parameters and optimum factors were the average of absolute residuals.

For the derivatives market, the result was good, but for the securities market
a problem was observed: for some dates, the difference between the real one-day
rates, estimated and observed, was as high as 1000bps. To avoid this problem
we suggest a transformation in the loss function in terms of price [equation (11)].
Below we have the new loss function used in the estimation of the real and nominal

14This projection was chosen because its calculations uses the Updated Nominal Value (UNV)
of the Brazilian inflation-indexed public debt bonds.

15[(0.1 : 0.1 : 1), (1.2 : 0.2 : 2), (2.25 : 0.25 : 4), (4.5 : 0.5 : 8)], where the middle value in
each parenthesis denotes the space skipped between the values on both extremes.
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interest rate curve for the securities market.

min
at,1,at,2,at,3,at,4

J∑
j=1

wt,j
(
− log

(
Pt,j

)
+ log (Pt,j)

)2
(37)

wt,j = (1/Tt,j)
2

Pt,j is the price of the security j given by equation (8) of the model in the instant
in time t’;
Pt,j is the price observed in the market of the security j in the instant in time t;
ωt,j is the weight which attributes the degree of importance of the security j in
the instant in time t;
Tt,j is the maturity of the security j in the instant in time t.

The idea of the transformation is to change the focus of the problem from the
prices to the rates, and with that, guarantee a small error for the rates of all the
securities with only one payment left. Keep in mind that the price of a security
with only one payment left is given by Pt,j = exp (−yt,jTt,j).

Another possible weight would be the duration
(
wt,j = (1/Dt,j)

2
)

. In our

experiment, the choice of the duration or maturity as a weight is not very relevant,
because we are interested in finding the expectation of inflation in a period of, at
most, 3 years. It is important to mention that this transformation can only be
made for the construction of the NTN-B curve, because this is the only one in
which the problem was observed.

Observe in Figure (18) the large difference in the beginning of the real interest
rate curves in the securities market, when they are built using the old and the new
method. As explained in the estimation section, the loss function based in prices
can present a lot of errors for short maturities (the error for maturities of one day
is approximately 1000 bps). The new function proposed solves this problem. See
the graph on top of Figure (18).

Observe in Figure (19) that the average curves of inflation are very different
in the short part: maturities up to a year, but practically the same for maturities
greater than a year.

This fact can be more clearly seen in table 20, which presents the average and
standard deviation of the nominal, real and inflation rates estimated for the secu-
rities market (Selic, Real Selic and Inflation Selic) and for the derivatives market
(DI, Real DI, and Inflation DI). Observe that the average breakeven inflation im-
plicit in the derivatives market has a higher level for all the selected maturities
then the ones implicit in the securities market. This difference begins in 100 bps
for maturities of 21 business days and gradually decreases to 13 bps for maturities
of 756 business days. On the other hand, the standard deviation for the inflation
measure based on derivatives is much bigger than that obtained with the public
securities, especially for short maturities.
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This difference in the measures of inflation can be almost entirely explained
by movements of the real rates in both markets, since both nominal interest rate
curves have averages that are practically the same, as well as very similar stan-
dard deviations. The high liquidity of both type of instruments used to build the
nominal curve prevents greater distortions. Curves with nearly identical charac-
teristics must have been practically identical in shape, otherwise arbitrage would
be possible.

The difference in the breakeven inflation is counterintuitive. There can be two
explanations for this fact:

(1) there is an opportunity for arbitrage that is not taken by the market agents,
or

(2) there is a microstructure that can explain this discrepancy.

The IPCA [SDL] coupon market has low liquidity when compared with the volume
of operations with inflation-indexed securities. Then it is possible that this differ-
ence be explained by the demand of a larger premium by the agents to compensate
the lower liquidity of that instrument. Future research could answer the question:
“Does the microstructure explain the difference or is there an unseen opportunity
for arbitrage?”

Figure 18
Curves when the loss function is based in a pricing error vs. Curves when the loss

function is based on rate error
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Figure 19
Average of the estimated curves using derivatives (top), using public bonds (middle)

and difference of the inflation curves obtained using bonds and derivatives, respectively,
(bellow)

Figure 20 – Table comparing the average and standard deviation of the inflation
expectations (annually) throughout time for selected future durations

Duration DI Selic Real DI Real Selic Inflation DI Inflation Selic
(bus days)
21 0,1445 0,1461 0,0911 0,103 0,0534 0,0431

0,0147 0,0155 0,0142 0,0129 0,0224 0,0093
42 0,143 0,1436 0,0892 0,1037 0,0538 0,04

0,0143 0,0143 0,0142 0,0147 0,0217 0,0052
63 0,1415 0,142 0,0889 0,1027 0,0526 0,0392

0,0138 0,0138 0,0117 0,0153 0,0181 0,0045
126 0,1385 0,1393 0,0897 0,0987 0,0488 0,0406

0,013 0,0132 0,0085 0,0132 0,0099 0,0035
189 0,1368 0,1379 0,0898 0,0962 0,047 0,0418

0,0128 0,0132 0,0093 0,0111 0,0076 0,0034
252 0,1358 0,1371 0,0896 0,0949 0,0462 0,0421

0,0127 0,0132 0,0097 0,0101 0,0069 0,0037
378 0,1346 0,1358 0,089 0,0939 0,0455 0,042

0,0126 0,0131 0,0097 0,0096 0,0062 0,0037
504 0,1337 0,1351 0,0886 0,0932 0,0451 0,0419

0,0125 0,013 0,0096 0,0097 0,0059 0,0035
756 0,1325 0,1344 0,0882 0,0915 0,0442 0,0429

0,0124 0,013 0,0095 0,0099 0,0056 0,0034
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7. Conclusions

The present paper used a statistical parametric model to build the interest
rate curves when the interest rates are non-observable. Additionally, it discussed
and demonstrated, using Brazilian inflation-indexed public debt securities, how it
is possible to perform a hedging of fixed income portfolios and to operate curve
movements (level, slope and curvature) based on a parametric model.

The paper presented a hedging approach that is an alternative to the one
suggested by Litterman and Scheinkman (1991) to build immunized portfolios
when the interest rates are unobservable, as it is the case of most international
and domestic debt markets in many emerging market economies.

The approach is interesting, because it starts with a parametric model, in which
the risk factors are represented by their parameters, with well-defined interpreta-
tions: level, slope and curvature. And demonstrates that the immunization or
change in exposure in relation to the parameters is equivalent to the portfolio im-
munization using principal components suggested by Litterman and Scheinkman
(1991), because the factors of the model generate the same orthogonal factors
subspace resulting from the analysis of principal components directly on the rates
(see Almeida et al., 2003).

Simulations of the hedging strategy and or the change in exposure in relation to
the parameters for the Brazilian inflation-indexed public debt securities show that,
despite being done in first order ($duration), the operation is efficient. Because,
since the factors have interpretations of level, slope and curvature, the first order
operation in relation to the coefficients is approximately equivalent when consid-
ering greater orders – such as convexity – instead of just the duration. Even when
compared with duration and convexity based procedures, the proposed method-
ology is more efficient, especially when the curve presents movements that are
different from the ones used in the curve operation. It is also important to point
out that the paper proposes two distinct ways of defining the slope movements
under the duration and convexity model which had never been described before
in the fixed-income literature.

The paper also demonstrated how to build and price portfolios that replicate
the risk factors (non-negotiable assets) starting from existing assets in the economy.
From their prices it was possible to extract information about the market agents
on future movements of the interest rate curves: the negative price of the slope
indicates that the agents value an increase in the slope of the curve, which is
consistent with the empirical evidence of a decrease in the real interest rate in
Brazil. On the other hand, the decrease in price of the slope throughout time
suggests that the agents were reevaluating the probability that the slope would
increase, and ultimately, invert (because in the beginning of the exercise the curve
is decreasing and convex).

Natural extensions would be trying to explain the latent factors using economic
fundamentals, that is
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(1) with macroeconomic fundamentals – inflation, production, consumption and
investment – and/or

(2) with microeconomic fundaments, such as agents preference and production
functions, which would allow us to give deeper economic interpretations.

To this end, authors such as Ang et al. (2007), Bernanke et al. (2004), Gallmeyer
et al. (2007), BeKaert et al. (2005), to name a few, have recently tried to describe
this relation, although in the framework of dynamic term structure models.

Other extensions would be: empirically testing the robustness of the immu-
nization strategies in and out of sample, using credit restrictions and second order
optimal conditions, that is, to use the convexity of the portfolio to the maximum
to carry out a hedging operation that surpasses the limit of portfolio protection.
Additionally, test the hedge model by solving the optimizations instead of a simple
equation system. This last procedure could also be used to obtain the approxi-
mated price of the factors in a parametric model using all the securities in the
market, instead of just four.
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