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1. Introduction

The works of Engle and Granger (1987) and Johansen (1991) laid the ground
for cointegration analysis. In their framework, the number and shape of linear
long-run relationships can be estimated, as well as the linear adjustment of the
system towards these equilibria. Readily the possibility of nonlinear behavior was
advanced; see, for example, Granger and Teräsvirta (2006).1 However, not until
Hansen and Seo (2002) did the matter received a fully formal treatment, latter
expanded by Bec and Rahbek (2004), Saikkonen (2005, 2008), Seo (2006, 2007),
and Kristensen and Rahbek (2009), among others. Virtually all the tests and
estimators developed involve complex calculations and non-standard asymptotic
distributions.

All possible advantages of taking nonlinear relations into account in a station-
ary environment are present in this framework; see, for instance, van Dijk et al.
(2002). Furthermore, there is the possibility to model persistent behavior in a
globally stationary setting, as noted in Gonzalo and Pitarakis (2006). Further-
more, contrary to a linear adjustment function where every deviation from the
cointegration relation is corrected, a nonlinear adjustment function may accom-
modate a deviation for a long period, until another shock takes the deviation to a
value where the adjustment function does not equal zero anymore.

In this paper, we propose a very simple linearity test and an estimation pro-
cedure for a nonlinear Error Correction Model (ECM).2 Our test is based on the
Taylor expansion of the adjustment function of the ECM, in the same spirit of
Luukkonen et al. (1988). The test is calculable as a standard F test. We show
that, for a broad class of nonlinear adjustment functions, the test is consistent
and χ2 asymptotically distributed. Monte Carlo experiments show that in finite
samples the test has nice size and power properties, often better than the preex-
isting tests in the literature. In comparison to the existing literature, our tests
are in the same spirit of Hansen and Seo (2002) and Seo (2007). Each of these
tests has one specific form of nonlinearity as alternative. In the former, it is a two-
regime threshold regression (TR) model and in the later, it is a smooth transition
regression (STR) model. As in many cases of linearity testing, under the null hy-
pothesis there are unidentified parameters, turning the usual maximum likelihood
approach impossible. The solution used in both papers, which was proposed in
Davies (1987), is to perform a supLM-type test, which has a nonstandard distri-
bution under the null and is frequently computer intensive to implement. First,
the likelihood functions are discontinuous or too flat, requiring grid searches over
some parameters. Second, bootstrap simulations are needed in order to assess the

1Nonlinearities in the cointegration relation itself, as in Saikkonen and Choi (2004), may not
have an Error Correction representation, as noted in Gonzalo and Pitarakis (2006). This makes
the two approaches rather separate from each other.

2We assume cointegration rank is known. For cointegration tests under nonlinearity, see
Kapetanios et al. (2006) and Seo (2006).
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asymptotic distributions, which are frequently not free from nuisance parameters.
Moreover, although the tests are derived against a very specific alternative hypoth-
esis, it is sensible to expect a high power against many classes of nonlinearities.

We also provide a mild condition on the derivatives of the nonlinear function
under which a two step estimator for the parameters in the model is consistent and
has a normal asymptotic distribution. The first stage in our approach is a Ordinary
Least Squares (OLS) regression, while the second step is a Nonlinear Least Squares
(NLS) estimation. In a recent paper, Kristensen and Rahbek (2009) show, in a
maximum likelihood framework, that it is possible to have asymptotic normal
estimators, although a nonstandard distribution is the general case. Whereas they
point that the linear model is in the subset of models with normal estimators, they
do not provide any general condition to determine which models pertain to each
case. While there is no formal way to determine which function to estimate, we
provide a heuristic approach based on a semi-parametric investigation of the data
to help the choice process.

Finally, we apply the test and estimation procedure to international agricul-
tural commodities prices. We find evidence of nonlinear behavior in the wheat
prices. Our results point to a behavior consistent with the presence of transaction
costs. The estimates of the cost are 17.4% for the pair Argentina and United
States and 12.1% for the pair Argentina and Brazil. These figures make sense,
putting higher costs between more distant markets.

The rest of the paper is organized as follows. Section 2 presents the model and
discusses its properties and applications. Section 3 describes the test procedure
and establishes its asymptotic distribution. Section 4 describes the estimation
procedures and establishes asymptotic distribution of the estimated parameters.
Section 5 compares the small sample properties of the proposed test with the
preexisting ones. Section 6 applies the methodology developed throughout the
paper to international agricultural commodities prices. Section 7 concludes.

2. The Model

We consider the following generalization of the linear ECM:

∆yt = f(β′yt−1) +

p∑
i=1

Γi∆yt−i + εt, (1)

where yt ∈ Rn is a I(1) vector of cointegrated series, the scalar zt = β′yt−1 ∼ I(0)
is a unique linear cointegration relationship, and f(·) : R→ Rn is a possibly non-
linear function. The model has a linear cointegration relation but a nonlinear
dynamics towards the long-run equilibrium. Although it is not explicitly consid-
ered in the paper, the long-run relation may include deterministic terms, such as
a constant or a linear trend.

The first issue is to establish the existence of such a model. It must be shown
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that a cointegrated vector yt may have an error correction representation as in
(1). In the linear case we have the Granger representation theorem of Engle and
Granger (1987). In the nonlinear framework a similar result have been established
under three different set of assumptions. In Saikkonen (2005), εt may have a
GARCH structure but f(x) − (α0 + α1x) = 0 when |x| −→ ∞. Kristensen and
Rahbek (2009) make the same hypothesis on the limits of f , but εt must be an
independent and identically distributed (IID) innovation. Saikkonen (2008) can
be seen as a generalization of Bec and Rahbek (2004), where the function f must
be a linear combination of linear functions, but not necessarily the same in the
extremes while εt may have a GARCH structure.

The most important assumption is the linearity of f in the limit. Since it is
present in every existent proof, we will use it throughout the paper.

Assumption 1 f(·) : R→ Rn is such that, for some K1,K2 ∈ Rn and α1,α2 ∈
Rn, lim

x→∞
f(x)− (K1 +α1x) = 0 and lim

x→−∞
f(x)− (K2 +α2x) = 0.

This restriction leads to the wide usage of smooth transition models, where
a weighting function (called transition function) is used to combine two or more
linear functions. The most common transition functions are the logistic and the
exponential. If

f(β′yt−1) = αβ′yt−1 + {1− exp[−λ(β′yt−1 − c)2]}δβ′yt−1 (2)

we have the exponential smooth transition model, where λ is the smoothness
(velocity) of the transition and c is the location parameter. If

f(β′yt−1) = αβ′yt−1 +
1

1 + exp[−λ(β′yt−1 − c)]
δβ′yt−1 (3)

we have the logistic smooth transition model, again with λ as the velocity of
transition and c as the location parameter. Another example, less widespread, is
a combination of logistic functions, from Suárez-Fariñas et al. (2004)

f(β′yt−1) =

αβ′yt−1 +

{
1 +

1

1 + exp[−λ(β′yt−1 − c)]
− 1

1 + exp[−λ(β′yt−1 + c)]

}
δβ′yt−1. (4)

Figure 1 illustrates the shape of the transition functions discussed above. These
transition functions generates adjustment functions f as shown in Figure 2. The
exponential and double logistic models may be very similar depending on the
value of the parameters. The exponential model has been used for no-arbitrage

148 Brazilian Review of Econometrics 33(2) November 2013



Nonlinear Error Correction Models With An Application To Commodity Prices

conditions in the presence of transaction costs, for example, addressing the PPP
puzzle in Michael et al. (1997). However, the exponential model may account for
little deviations from linearity, sometimes fitting its curve to better accommodate
an outlier. The logistic model is appropriate for cointegration of variables with
different behavior when above or under a certain value, possibly zero. A very
similar model was used in Hansen and Seo (2002) for long and short bonds interest
rates.

3. Testing Linearity

We want to test whether f is a linear function or not. If f is the exponential or
logistic function, this could be done by testing H0 : λ = 0 or H0 : δ = 0 in Equa-
tions (2), (3), or (4). The issue is that in any case there are unidentified parameters
under the null hypothesis. One possible solution is to follow Davies (1987) and
perform a supLM test, as done in Hansen and Seo (2002) and Seo (2007). Another
possibility is to follow the ideas in Luukkonen et al. (1988) and substitute f by its
Taylor expansion around the null hypothesis and test the polynomial coefficients.
The latter will be our approach.

We will make two extra assumptions.

Assumption 2 The function f : R → Rn is three times continuously differen-
tiable.

Assumption 3 {ε}t is a sequence of independent and normally distributed ran-
dom vectors with zero mean and positive definite covariance matrix Υ, εt ∼
NID(0,Υ).

Assumption 4 Set zt = β′yt−1 ∼ I(0). E(zδt ) < ∞ and E(∆yt−iz
δ
t ) < ∞, for

δ > 6 and i = 1, . . . , p.

The differentiability is needed in order to guarantee the validity of the Taylor
expansion, while Assumption 3 is common in error correction models. A important
restriction is threshold models. Since the threshold function is not differentiable
everywhere, it does not satisfy Assumption 2, which is essential to the validity of
the test. However, in finite samples, a threshold model can always be approximated
through a logistic smooth function by taking a large enough λ.

This approach has two advantages over the supLM one. First, it is extremely
simple and much faster computationally. While supLM demands bootstrap cal-
culations, grid searches and involves non-standard asymptotic distributions, the
Taylor expansion approach demands only a simple F-test. The computing time
difference is of the order of 104. Second, since the test does not have a specific
alternative hypothesis, it is consistent against a large set of nonlinearities. The su-
pLM approach will be consistent only against the specific alternative being tested,
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Figure 1
Transition functions versus the transition variable
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Figure 2
Adjustment Functions
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(a) Exponential Model Adjustment
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(b) Logistic Model Adjustment
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(c) Double Logistic Model Adjustment

Each function is depicted with two different λ values, c = 2, α = 0 and δ = 0.3. Dashed lines (λ = 10)and continuous
line (λ = 1).

Brazilian Review of Econometrics 33(2) November 2013 151



Rafael Magri and Marcelo C. Medeiros

but will also have power against other alternatives as well. Thus, since it is pos-
sible that the process is nonlinear but is not the alternative hypothesis, accepting
H0 does not mean the process is linear and rejecting H0 does not guarantees the
nonlinearity has the form being tested. This is true even for large samples.

Using a third-order expansion of f around β′yt−1 = 0, (1) becomes3

∆yt = θ0 + θ1(β′yt−1) + θ2(β′yt−1)2 + θ3(β′yt−1)3 +

p∑
i=1

Γi∆yt−i + ε∗t , (5)

where ε∗t = εt +
(
1
6

)
f (4)(kt)(β

′yt−1)4, for some kt ∈ R, θ0 = f(0), θ1 = f (1)(0),

θ2 =
(
1
2

)
f (2)(0), and θ3 =

(
1
6

)
f (3)(0). f (i)(0) is the ith-order derivative of f

evaluated at 0. When f is linear, we have θ2 = θ3 = 0. When f is nonlinear,
f (2)(x) 6= 0 for almost every x ∈ R. The inequality will not hold if x is a point
of inflexion of the function. This will be true for x = 0 if, for example, f is
an odd function. We include the third term of the expansion to deal with this
situations. To keep it concrete, take the exponential model where θ0 = 0, θ1 = α+
δ exp(−λc2), θ2 = −4cδλ exp(−λc2), θ3 = 3δ[2λ exp(−λc2)−4c2λ2 exp(−λc2)]. If
the location parameter, c, is zero, the function is odd, and θ2 = 0, but θ3 6= 0.
Therefore, the test will be able to detect the nonlinearity. To test H0 : f is linear
against HA : f is nonlinear, we propose the following procedure:

(a) Estimate β̂ super-consistently. In our framework, it is enough to run an OLS
in the equation y1t = β1 + β2y2t + · · ·+ βnynt + ut;

4

(b) Estimate (5) by OLS using β̂ in place of β. Then, perform a F-test for the
following null hypothesis H0 : θ2 = θ3 = 0.

Proposition 3.1 Under Assumptions 1–4 and H0 : θ2 = θ3 = 0, the F-statistic
on the second stage of the proposed test has a χ2(2n) asymptotic distribution.
Moreover, under HA, the test is consistent.

4. Estimation and Asymptotic Properties

Given a function f parameterized by a vector ψ ∈ Rm, f(x,ψ), the param-
eters Γ1, . . . ,Γp and ψ are estimated in two stages. Set η′ = [ψ′, vec(Γ1)′, . . . , vec
(Γp)

′]′ and define the Nonlinear Least Squares (NLLS) estimator of η as

η̂ = argmin
η
QT (Y ,η) = argmin

η

T∑
t=1

εt(η)′εt(η), (6)

3See Lemma C.1 in the Appendix.
4In case of endogenous regressors, Dynamic OLS (DOLS) may be used.
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where εt(η) = ∆yt − f(β′yt−1,ψ) −
∑p
i=1 Γi∆yt−i and Y = (y1, . . . ,yT )

′
is a

(T × n) matrix representing the dataset.
Consider the following estimation procedure:

(a) Estimate β̂ super-consistently as discussed in Section 3.

(b) Estimate (1) by NLLS using β̂ instead of β.

To establish the asymptotic normality of the estimators, we will need two extra
assumptions. First, define the following partial derivatives:

fψi(x,ψ) =
∂f(x,ψ)

∂ψi
, fψix(x,ψ) =

∂2f(x,ψ)

∂ψi∂x
, fψiψj (x,ψ) =

∂2f(x,ψ)

∂ψi∂ψj
,

and so on.

Assumption 5 The derivatives fψix(x,ψ) and fψiψjx(x,ψ) are limited in x
∀i, j ∈ {1, . . . ,m}.

Note, for example, that the models discussed in the previous sections attend
Assumption 5.

Proposition 4.1 Under Assumptions 1–5,
√
T (η̂ − η)

d−→ N(0,Σ). Further-
more, the matrix Σ is consistently estimated by

Σ̂ =

[
T∑
t=1

J(yt, η̂)′J(yt, η̂)

]−1 [ T∑
t=1

J(yt, η̂)′εt(η̂)εt(η̂)′J(yt, η̂)

]
[
T∑
t=1

J(yt, η̂)′J(yt, η̂)

]−1
,

where

J(yt,η) =
∂εt(η)

∂η
.

Again, as a consequence of the faster convergence rate of the cointegrating
vector β̂, the nonlinear least squares of the second stage has standard asymptotics.
Using a maximum likelihood approach, Kristensen and Rahbek (2009) showed
that the general distribution of the parameters estimator is non-standard, drawing
attention to the fact that it was possible that some models would yield normal
distributions, for example, the linear model. However, having rejected the null
hypothesis of linearity in the test presented in the previous section, what model
should a researcher estimate? In other words, which function f to choose? In some
applications, it is possible that the researcher has a specific function in mind. For
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example, in Kapetanios et al. (2006) it is shown that a incomplete information
model may lead exactly to a model with logistic transition equation. Yet, this will
not always be the case. When there is no theoretical function available, we propose
a heuristic procedure based on a semi-parametric approach. Comparing the semi-
parametric estimate with the existing functions in the nonlinear literature, it is
possible to choose the most adequate.

5. Small Sample Properties

In this section we conduct Monte Carlo experiments to assess size and power of
the test in small samples. We will compare the performance of the proposed test
(henceforth refereed as Taylor) with the other two available tests for nonlinearity in
Error Correction Models, Hansen and Seo (2002) and Seo (2007), which henceforth
will be referred respectively as HS and Seo.5 These are supLM tests, designed
against a specific alternative hypothesis. In HS, the alternative is a threshold
model, whereas in Seo it is a logistic or an exponential smooth transition model.

The models used in each simulation will be the same used in Hansen and
Seo (2002) and Seo (2007), so as to render the results directly comparable. The
sample size is always 250 and the number of repetitions is fixed in 1000. The
error is independent multivariate normal with unit variance. First, to asses the
empirical size, the Data Generating Process (DGP) will be

∆yt =

(
α1

α2

)
(y1t−1 − β2y2t−1) + Γ∆yt−1 + εt,

where Γ may assume three values:

Γ0 =

(
0 0
0 0

)
, Γ1 =

(
−0.2 0
−0.1 −0.2

)
, or Γ2 =

(
−0.2 −0.1
−0.1 −0.2

)
.

The parameters α1 = −1 and β2 = −1 are fixed and α2 varies among 0, -0.5
and 0.5. The results of the simulation for the Taylor test are in Table 1, as well as
the results from Hansen and Seo (2002) and Seo (2007). The results are somewhat
homogenous, showing good size in almost every case. The largest deviation being
1.4% for Seo L, followed by 0.9% for Seo E, 0.8% for HS and 0.8% for Taylor. The
mean deviation is 0.38% for HS, 0.84% for Seo L, 0.24% for Seo E and 0.4% for
Taylor.

To compare the power, the first DGP is

∆yt =

(
α1

0

)
(y1t−1 − β2y2t−1) +

(
−δ1

0

)
(y1t−1 − β2y2t−1) f(zt−1, λ, c) + εt,

5Seo L will refer to the test against a logistic function and Seo E will refer to the test against
the exponential function.
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Table 1
Empirical Size.

This table presents for the featured tests the empirical size for

a linear ECM Data Generating Process calculated by a Monte

Carlo experiment with 1000 repetitions for a 250 observations

sample size.

α2 0 -0.5 0.5 0 0
Γ Γ0 Γ0 Γ0 Γ1 Γ2

HS 0.054 0.056 0.047 0.054 0.052
Seo L 0.059 0.058 0.036 0.051 0.060
Seo E 0.046 0.051 0.047 0.049 0.047
Taylor 0.054 0.053 0.055 0.042 0.050

where f is the exponential function, as in Equation (2) or the logistic function, as
in Equation (3). The parameters δ1 and λ take the values (0.4, 0.8) and (0.75, 3, 9)
respectively, while α1 is fixed in −0.2 and β2 is fixed in 1. The simplicity of
the model under the alternative is due to the computational requirements of the
two supLM tests. In Hansen and Seo (2002) we read “To keep the calculations
manageable, we generate the data from the simple process,” while Seo (2007) uses
“25 grid points (...) to reduce the computational costs.”

It is expected that higher δ1 values will yield higher powers, since the nonlin-
earity will be more pronounced. Also, for the logistic function, higher λ values
should yield higher powers, since, as can be seen in Figure 2, a smaller λ makes
the function more similar to a linear one. For the exponential function, higher
powers should be associated with smaller λ values. As shown in Figure 2, high
lambda values turn the nonlinear region very small.

In Table 2 we can see that, even though this model is the alternative hypothesis
under which the Seo test was developed, the Taylor test has a better power for all
but one of the parameters combinations for the logistic case. Even the HS test is
better than the Seo test in this case. In the exponential case we have the inverse
situation: the Seo test is better than the other two tests in all but one of the
parameters combinations. However, the power is very small in most of the cases.

The second DGP is

∆yt =

(
α1

0

)
(y1t−1 − β2y2t−1) +

(
δ1
0

)
(y1t−1 − β2y2t−1) 1

(y1t−1 − β2y2t−1 ≤ λ) + εt,

where 1(·) is the indicator function. Parameters α1 and β2 will be held fixed at
−1 and 1 respectively, while δ will take values (0.2, 0.4, 0.6, 0.8). The parameter
λ is set so that ω = P (y1t−1 − β2y2t−1 ≤ λ) equals 0.5 or 0.25. This model is
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Table 2
Empirical Power.

This table presents for the featured tests the empirical power for a

Smooth Transition ECM Data Generating Process calculated by a

Monte Carlo experiment with 1000 repetitions for a 250 observations

sample size.

δ1 0.4 0.4 0.4 0.8 0.8 0.8
λ 0.75 3 9 0.75 3 9

DGP with Logistic Function
HS 0.514 0.626 0.610 0.927 0.904 0.897

Seo L 0.212 0.596 0.554 0.520 0.966 0.953
Taylor 0.625 0.648 0.620 0.984 0.970 0.943

DGP with Exponential Function
HS 0.066 0.064 0.058 0.096 0.069 0.043

Seo E 0.285 0.077 0.057 0.869 0.124 0.057
Taylor 0.119 0.065 0.043 0.379 0.064 0.058

Table 3
Empirical Power.

This table presents for the featured tests the empirical power for a Threshold ECM Data

Generating Process calculated by a Monte Carlo experiment with 1000 repetitions for a 250

observations sample size.

δ1 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
ω 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25

HS 0.156 0.450 0.878 0.997 0.187 0.527 0.844 0.933
Taylor 0.151 0.503 0.891 0.994 0.179 0.592 0.888 0.958

the alternative for which the HS test was developed. The empirical power is in
Table 3.

It is worth remembering that we cannot establish the consistency of the Taylor
test against the threshold alternative. Despite this, the power in small samples is
the same or better than the HS test in all parameters used in this Monte Carlo.

6. Application: International Commodities Prices

A leading application of nonlinearity in ECMs is price adjustment of identical
products traded in separate markets. It is reasonable to expect these prices to be
cointegrated, otherwise there would be perennial arbitrage opportunities. Yet, for
each arbitrageur there must be a minimum deviation to cover transaction costs.
Therefore, the adjustment should be nonlinear. Examples are tradable goods in
the American CPI in Lo and Zivot (2001), stocks and their respective Depositary
Receipts in Chung et al. (2005), agricultural commodities prices in Balcombe et al.
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Table 4
Linearity Tests.

Commodity Country Pair F statistic P-Value
Wheat US ARG 35.60026 0.0000

US BR 5.313077 0.2567
BR ARG 38.48891 0.0000

Soybean US ARG 7.716483 0.1025
US BR 8.660560 0.0702

BR ARG 2.307507 0.6794
Maize US BR 3.175390 0.5289

(2007), among many others.
In Balcombe et al. (2007), Bayesian estimation is used to avoid the issues

already mentioned in nonlinear ECMs. They find evidence of nonlinearity in ad-
justment of Brazilian and American prices of maize, soybeans and wheat. We
will apply our methodology to a database similar to the one used there. It is a
monthly prices series from United States Department of Agriculture (USDA) to
USA and Argentina prices and from Institute for Pure and Applied Economics
Research (IPEA) to Brazil prices of each one of the three products, consisting of
151 observations from October/1996 to April/2009.

All series are I(1), either by Augmented Dickey-Fuller or Phillips-Perron tests.
Both Engle-Granger and Johansen tests for linear cointegration indicate the pres-
ence of cointegration vector (1,−1). For the sake of brevity we do not report these
results here.

On Table 4 we see the results for our nonlinearity test. We find strong evidence
of nonlinearity on the adjustments of wheat prices from Argentina (both to Brazil
and United States) and weak evidence on the adjustment of soybeans prices from
the United States (again, both to Brazil and Argentina).

We will estimate the nonlinear ECM for the two wheat prices pairs. But first,
we estimate the linear ECMs for both pairs, in order to compare the results after-
wards. The lag length selection is made by the Schwartz Information Criterion.
The ECMs are estimated without constant both in the cointegration equation and
in the VAR. The equation to be estimated is(

∆pit
∆pjt

)
=

(
αi
αj

)
(pit−1 − β2pjt−1) + Γ1∆pt−1 + ut, (7)

where i and j are the countries. Our parameters of interest are αi and αj , which
tells us how much prices adjust in response to deviations from the long run equi-
librium and β2, which gives us the long run equilibrium of the prices. The results
are in Table 5. Both pairs have a (1,−1) cointegration vector, meaning the prices
are equal in equilibrium. Furthermore, in both cases it is the price in Argentina
that moves in response to disequilibria.
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Table 5
Linear ECM Estimations for Wheat Prices

United States and Argentina Brazil and Argentina
Estimate Std. Deviation Estimate Std. Deviation

β2 1.012794 0.004632 β2 1.004575 0.004522
αUS -0.009278 0.038997 αBr 0.057601 0.060062
αArg 0.235855 0.099806 αArg -0.218631 0.049419
R2 US equation 0.0524 R2 Br equation 0.2048
R2 Arg equation 0.2683 R2 Arg equation 0.1939

To decide which nonlinear model to estimate, we make a semi-parametric re-
gression. The results, seen in Figure 3, panels (a), (b), (c) and (d), show that
for small deviations there is no adjustment. After a threshold the adjustment is
proportional to the deviation size. This features are consistent with the presence
of transaction costs. Moreover, two graphics show no reaction to deviations, which
are exactly the non-significant coefficients from the linear estimates. The function
shape is very similar to the Smooth Transition Model from Suárez-Fariñas et al.
(2004), of which the graphic is in Figure 3(e). We will estimate the model with
this nonlinear function.

The expression for the function is

F (pit−1 − β2pjt−1, λ, c) = 1 +
1

1 + exp[−λ(pit−1 − β2pjt−1 − c)]

− 1

1 + exp[−λ(pit−1 − β2pjt−1 + c)]

(8)

and the model to be estimated is

(
∆pit
∆pjt

)
=

(
αi
αj

)
(pit−1 − β2pjt−1)F (pit−1 − β2pjt−1, λ, c) + Γ1∆pt−1 + ut.

The estimation procedure is not straightforward. As noted in Teräsvirta (1994),
the joint estimation of λ and the rest of the parameters is difficult. Numerical prob-
lems arise, making the convergence too slow and inflating the estimated parameter.
We adopt the same solution proposed in that paper, which is to perform a grid
search over (λ, c) and then estimate the rest of the parameters given these num-
bers. Afterwards we use these estimates as starting points for the minimization
problem in Equation (6).

The results are in Table 6. For the prices from United States and Argentina, the
estimated threshold is 0.1742. In our motivation, this means that if the difference
between prices is less than 17.42%, there is not enough arbitrage pressure to drive
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Figure 3
Adjustment functions
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Panels (a), (b), (c) and (d) display the nonparametric estimations. Panel (e) displays the function used in the
estimation.

Brazilian Review of Econometrics 33(2) November 2013 159



Rafael Magri and Marcelo C. Medeiros

Table 6
Nonlinear ECM Estimations for Wheat Prices

United States and Argentina Brazil and Argentina
Estimate Std. Deviation Estimate Std. Deviation

λ 28.0915 10.8536 λ 65.2485 18.1752
c 0.1742 0.0284 c 0.1211 0.0112
β2 1.0135 0.0069 β2 1.0038 0.0068
αUS -0.1516 0.1083 αBr 0.1440 0.1010
αArg 0.8819 0.2073 αArg -0.9164 0.1726

1st Regime % 0.054 1st Regime % 0.044
R2 US equation 0.0716 R2 Br equation 0.2204
R2 Arg equation 0.4129 R2 Arg equation 0.3871

the prices back to the equilibrium. When the difference is bigger than 17.42%,
arbitrageurs enter the market, forcing the prices back to the long run equilibrium.
For the prices from Brazil and Argentina, this threshold is 12.11%, less than the
previous one. This makes sense, since we expect the transaction costs to be smaller
between markets closer to each other.

As expected, in comparison with the linear model, the estimated long run
equilibrium, β, has almost not changed. The adjustment coefficients estimates, α,
are not directly comparable. They have the same meaning only for sufficiently large
cointegration errors, when the nonlinear adjustment function is already proximate
to its linear limit. For small deviations, Figure 4 shows the shape of the estimated
functions in each equation of the two nonlinear ECMs. Since in the linear ECM,
this function would be linear with inclination equal to αi, it is clear that our
nonlinear estimates predict smaller adjustment for smaller cointegration errors
and higher adjustment for higher cointegration errors.

7. Conclusions

Exiting tests for nonlinearity in Error Correction Models (ECM) are of the su-
pLM type, with non standard asymptotic distribution. Furthermore, even though
they are designed against specific alternative hypothesis, they have considerable
power against other nonlinearities, even though lacking consistency. We have pro-
posed a simple F type test, with χ2 asymptotic distribution, designed against a
more general alternative. In small samples, the proposed test has similar power
when testing for the specific alternatives for the existing tests and better power
when testing for a diverse nonlinearity. We also provide a condition on the deriva-
tives of the nonlinear function, which is attended by any Smooth Transition Model,
under which a two step estimator for the parameters in the model has normal
asymptotic distribution. The first stage is a Ordinary Least Squares, while the
second is a Nonlinear Least Squares. While there is no formal way to determine
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Figure 4
Estimated Adjustment Functions
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which function to estimate, we provide a heuristic approach based on a semi-
parametric investigation of the data to help the choice process.

Both contributions follow the literature in assuming a known number of coin-
tegration relations. A important aim for future research in the field is a test for
the cointegration rank in the presence of this kind of nonlinear behavior.

Testing for non linearities in the adjustment of agricultural commodities prices
in different countries shows strong evidence of nonlinear adjustment between wheat
prices from Argentina, Brazil and United States. A semi-parametric regression
points to a Smooth Transition ECM of the type used in Suárez-Fariñas et al.
(2004), in which there is no price adjustment for disequilibria below a certain
threshold. The estimated threshold is 17.4% for the equilibrium between prices in
United States and Argentina and 12.1% between prices in Brazil and Argentina.
This result is consistent with the presence of transaction costs, putting higher costs
between more distant markets.
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Granger, C. & Teräsvirta, T. (2006). Modelling Nonlinear Dynamic Relationships.
Oxford University Press, Oxford.

Hansen, B. & Seo, B. (2002). Testing for two-regime threshold cointegration in
vector error-correction models. Journal of Econometrics, 110:293–318.

Ibragimov, R. & Phillips, P. (2008). Regression asymptotics using Martingale
convergence methods. Econometric Theory, 24:888–947.

162 Brazilian Review of Econometrics 33(2) November 2013



Nonlinear Error Correction Models With An Application To Commodity Prices

Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in
Gaussian vector autoregressive models. Econometrica, 59:1551–1580.

Kapetanios, G., Shin, Y., & Snell, A. (2006). Testing for cointegration in nonlinear
smooth transition error correction models. Econometric Theory, 22:279–303.

Kristensen, D. & Rahbek, A. (2009). Likelihood-based inference in nonlinear error-
correction models. Journal of Econometrics, 158:78–94.

Lo, M. & Zivot, E. (2001). Threshold cointegration and nonlinear adjustment to
the law of one price. Macroeconomic Dynamics, 5:533–576.
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A. Appendix

The proofs to Propositions 3.1 and 4.1 are in the first section, while the proofs
of all lemmas used are in the second section of this Appendix.

B. Propositions

Proof. (Proposition 3.1) Suppose H0 is true. Without loss of generality and
or the sake of clarity, consider a system of two variables, only one lag of only one of
the variables and no constant. Under H0 and the knowledge of β all the regressors
are stationary. Therefore, the asymptotic distributions would be standard. We
will show that using super-consistent β̂ yields the same limiting distributions.
Consider the first equation of the system:

∆y1t = θ11(ẑt−1) + θ21(ẑt−1)2 + θ31(ẑt−1)3 + γ∆y1t−1 + ε̃1t, (9)

where zt = β′yt−1, ẑt = β̂
′
yt−1 and ε̃1t = ε1t + θ11(β̂2−β2)y2t−1 + θ21[2zt−1(β̂2−

β2)y2t−1 + 3(β̂2 − β2)2y22t−1] + θ31[3z2t−1(β̂2 − β2)y2t−1 − 3zt−1(β̂2 − β)2y22t−1 +

5(β̂2−β2)3y32t−1]. We will prove the result for this equation, the extension to both
equations being straightforward but involving much longer and tedious manipula-
tions.

First, note that
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√
T


γ̂1 − γ1
θ̂11 − θ11
θ̂21 − θ21
θ̂31 − θ31

 =

T



T∑
t=1

∆y21t−1

T∑
t=1

∆y1t−1ẑt−1

T∑
t=1

∆y1t−1ẑ
2
t−1

T∑
t=1

∆y1t−1ẑ
3
t−1

T∑
t=1

∆y1t−1ẑt−1

T∑
t=1

ẑ2t−1

T∑
t=1

ẑ3t−1

T∑
t=1

ẑ4t−1

T∑
t=1

∆y1t−1ẑ
2
t−1

T∑
t=1

ẑ3t−1

T∑
t=1

ẑ4t−1

T∑
t=1

ẑ5t−1

T∑
t=1

∆y1t−1ẑ
3
t−1

T∑
t=1

ẑ4t−1

T∑
t=1

ẑ5t−1

T∑
t=1

ẑ6t−1



−1

× 1√
T



T∑
t=1

∆y1t−1ε̃t

T∑
t=1

ẑt−1ε̃t

T∑
t=1

ẑ2t−1ε̃t

T∑
t=1

ẑ3t−1ε̃t


.

Hence, to establish our result, it suffices to show that:

(a) plim T−1
∑T
t=1 ∆y1t−1ẑ

l
t−1 = plim T−1

∑T
t=1 ∆y1t−1z

l
t−1, ∀l = 1, 2, 3.

(b) plim T−1
∑T
t=1 ẑ

k
t−1 = plim T−1

∑T
t=1 z

k
t−1,∀k = 2, 3, 4, 5, 6.

(c) T−1/2
∑T
t=1 ∆y1t−1ε̃t has the same asymptotic distribution of

T−1/2
∑T
t=1 ∆y1t−1εt.

(d) T−1/2
∑T
t=1 ẑ

h
t−1ε̃t has the same asymptotic distribution of

T−1/2
∑T
t=1 z

h
t−1εt for h=1,2,3.

(a) and (b) follow directly from Lemma C.4.
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To prove (d), note that the expression ẑ2t−1ε̃1t equals ẑ2t−1ε1t plus a number of
terms in the form

(β̂2 − β2)i
T∑
t=1

zkt−1y
i
2t−1.

Following what was shown in Lemma C.4, as long as i ≥ 1 and k > 0, the
expression is op(1), i.e., the limit when T → ∞ is zero. If k = 0, we need i ≥ 2.
In this case, the inequality is respected in all expressions.

Hence, T−1/2
∑T
t=1 ẑ

h
t−1ε̃1t = T−1/2

∑T
t=1 ẑ

h
t−1ε1t + op(1). Again from Lemma

C.4, T−1/2
∑T
t=1 ẑ

h
t−1ε1t = T−1/2

∑T
t=1 z

h
t−1ε1t + op(1), and from here the result

follows.
Proof of claim (c) is analogous to the proof to claim (d).
Now, suppose HA is true. To prove the consistency we will show that, under

HA, the F-statistic diverges to infinity. Under the alternative, ∆y1t follows Equa-
tion (9) except for the error, which becomes ε̃∗1t = ε̃1t + 1

6f
(4)(kt, ψ)(zt−1)4 for

some fixed kt ∈ R.
Let Zt =

(
ẑt−1, ẑ

2
t−1, ẑ

3
t−1,∆y1t−1

)′
and ZT = (Z1, . . . ,ZT )

′
. Then, plim(

1
TZTZ ′T

)−1
= Ω is unchanged whether H0 is true or not. We will show that

under HA, T−1/2(θ̂21 − 0) diverges. Let Ω̃ be the relevant partition of Ω.
Note that

T−1/2θ̂21 = Ω̃T−1/2
T∑
t=1

ẑ2t−1∆y1t

= T 1/2θ21 + Ω̃T−1/2
T∑
t=1

ẑ2t−1ε̃
∗
1t

= T 1/2θ21 + Ω̃T−1/2
T∑
t=1

[
ẑ2t−1ε̃1t + ẑ2t−1

1

6
f (4)(kt, ψ)(zt−1)4

]
.

We know, from Assumptions 1 and 5, that 1
6f

(4)(kt, ψ) is bounded. So, we can
write

−K
T∑
t=1

ẑ2t−1(zt−1)4 <

T∑
t=1

ẑ2t−1
1

6
f (4)(k1, ψ)(zt−1)4 < K

T∑
t=1

ẑ2t−1(zt−1)4.

Pre-multiplying by T−1/2, taking limits, and using the results in Lemma C.4,
we get

Op(1) <

T∑
t=1

ẑ2t−1
1

6
f (4)(k1, ψ)(zt−1)4 < Op(1).
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From (d) we know that T−1/2
∑T
t=1 ẑ

2
t−1ε̃1t is Op(1). Therefore, we have two

limited terms plus T 1/2θ21, which will diverge to ∞, giving us the result. The
same argument applies to the F-test, only with lengthier calculations.

Finally, from (b) it is easy to see that plimT−1(ε̂21t) exists.

�

Proof. (Proposition 4.1) Again, for the sake of simplicity, let us consider only
one lag of only one variable. In addition, without loss of generality, we will assume
ψ is scalar. The NLLS problem is

min
1

2
T−1

T∑
t=1

[
∆y1t − f(β̂

′
yt−1, ψ)− γ∆y1t−1

]2
.

The first order conditions are:

T−1
T∑
t=1

ŝt(ψ̂, γ̂) = 0,

where

ŝt(ψ̂, γ̂) =
[
∆y1t − f(β̂

′
yt−1, ψ̂)− γ̂∆y1t−1

] [
fψ(β̂

′
yt−1, ψ̂)

∆y1t−1

]
.

We will always use the hat to make clear whether the function is calculated

with β̂
′
yt−1 or β′yt−1.

We can make a mean-value expansion around (ψ, γ):

T∑
t=1

ŝt(ψ, γ) +

T∑
t=1

Ĥt(ψ̃, γ̃)

(
ψ − ψ̂
γ − γ̂

)
= 0,

where

Ĥt(ψ, γ) =

[
∂ŝt(ψ,γ)
∂ψ

∂ŝt(ψ,γ)
∂γ

]′
,

(ψ̃, γ̃) = (ψ̂, γ̂) + t(ψ, γ), for some t ∈ (0, 1).
From Lemma C.5

plimT−1
T∑
t=1

Ĥt(ψ̃, γ̃) = plimT−1
T∑
t=1

Ht(ψ, γ) = H(ψ, γ),

for some fixed H(ψ, γ).
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Therefore,

T 1/2

(
ψ − ψ̂
γ − γ̂

)
= [Ht(ψ, γ)]

−1
(
−T−1/2

) T∑
t=1

ŝt(ψ, γ) + op(1).

All we have to show now is that

(T−1/2)

T∑
t=1

ŝt(ψ, γ) = (T−1/2)

T∑
t=1

st(ψ, γ) + op(1).

It is sufficient to show that

(a) T−1/2
∑T
t=1 ∆y1tfψ(β̂

′
yt−1, ψ̂) = T−1/2

∑T
t=1 ∆y1tfψ(β′yt−1, ψ̂) + op(1)

(b) T−1/2
∑T
t=1 f(β̂

′
yt−1, ψ̂)fψ(β̂

′
yt−1, ψ̂) =

T−1/2
∑T
t=1 f(β′yt−1, ψ̂)fψ(β′yt−1, ψ̂) + op(1)

Claims (a) and (b) follow directly from Lemma C.4 and Assumption 5.
As to the covariance matrix estimator, the proof is standard. Since we only

need to use the Law of Large Numbers, the non-stationarity of the variables does
not bring any extra complications Wooldridge (2001).

�

C. Lemmas

Lemma C.1 Suppose f is a function which is n times continuously differentiable
on the closed interval [a - r, a + r] and n + 1 times differentiable on the open in-
terval (a-r,a+r). If there exists a positive real constant Mn such that |f (n+1)(x)| <
Mn,∀x ∈ (a− r, a+ r), then

f(x) = f(a) + f
′
(a)

(x− a)

1!
+ f

′′
(a)

(x− a)2

2!
+ . . .+ f (n)(b)

(x− a)n

n!

for some b ∈ (a, x).

Proof. See Apostol (1967).

�

From Ibragimov and Phillips (2008):

Theorem C.2 Let f : R→ R be a twice continuously differentiable function such
that f ′ satisfies the growth condition |f ′(x)| ≤ K(1 + |x|α),∀x ∈ R for some
constants K > 0 and α < 0. Suppose that ut and vt are two linear processes ut =∑∞
j=1 γjεt−j and vt =

∑∞
j=1 δjεt−j where

∑∞
j=1 j|γj | < ∞,

∑∞
j=1 j|δj | < ∞ and
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(εt)t∈Z are zero-mean i.i.d. random variables with E[ε20] < ∞ and E[|ε0|p] < ∞
for p ≥ max(6, 4α). Then

1√
T

[Tr]∑
t=2

f

(
1√
T

t−1∑
i=1

ui

)
vt

d→ λuv

∫ r

0

f ′(ωuW (v))dv + ωv

∫ r

0

f(ωuW (v))d(W (v),

where ωu = E[u2t ], ωv = E[v2t ] and λuv =
∑∞
j=1E[u0v0].

The exact form of the limiting distribution is not relevant for our results. What
we need is the following corollary.

Lemma C.3 Under the conditions of Theorem C.2,

T−1/2
T∑
t=2

f

(
T−1/2

t−1∑
i=1

ui

)
vt = Op(1)

.

Note that the derivatives of any polynomial function satisfy the growth condi-
tion.

Lemma C.4 Let vt be a stationary process, yt be an I(1) cointegrated vector, with

cointegration vector β and β̂ a super-consistent estimate of β. Let also, for some
d <∞, f : R→ R be d times continuously differentiable and the d-th derivative of

f be limited. Then, T−1/2
∑T
t=1 f(β′yt)vt = T−1/2

∑T
t=1 f(β̂

′
yt)vt + op(1), and

plim T−1
∑T
t=1 f(β′yt) = plim T−1

∑T
t=1 f(β̂

′
yt).

Proof. For the first result, consider first a two dimensional case β′yt = y1t +
β2y2t. Using Lemma C.1 to expand f around β2y2t,

f(β̂
′
yt) = f(β′yt) + f ′(β′yt)(β̂2 − β2)y2t + · · ·+ f (d−1)(β′yt)(β̂2 − β2)d−1yd−12t

(d− 1)!

+
fd(β̃′yt)(β̂2 − β2)dyd2t

d!

for some β̃′yt ∈
(
β̂
′
yt,β

′yt

)
. Taking the k-th term, such that 3 ≤ k ≤ d− 1, we

have, by Lemma C.3,

(β̂2 − β2)k
T∑
t=1

fk(β′yt)vty
k
2t/k! = T−(k−1)/2

[
T (β̂2 − β2)

]k
×

[
T−(k+1)/2

∑T
t=1 f

k(β′yt)vty
k
2t

k!

]
= T−(k−1)/2Op(1)Op(1) = op(1).
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For k = 2 we get a Op(1), but it will be further divided by T 1/2, giving us an
op(1). Since the d-th derivative is limited, for some M ∈ R, the sum of the d-th
term is bounded by

±M
T∑
t=1

(β̂2 − β2)dvty
d
2t = ±MT−(d−1)/2

[
T (β̂2 − β2)

]d [
T−(d+1)/2

T∑
t=1

vty
d
2t

]
= T−(d−1)/2Op(1)Op(1).

Again, if d 6= 1 we have an op(1) expression, if d = 1, we are back to the k = 2
case. Therefore, the only remaining term is the first, which gives us the result.
For the multidimensional case, just repeat the reasoning for each dimension of β′.

The second result is proven by the same line of reasoning. The only difference
is that in the end of each expression we will have T−(i−2)/2Op(1)Op(1), giving us
an op(1) except for i = 1, 2. But since the expression will be divided by T , we will
have op(1) for every i.

�

Lemma C.5 plim T−1
∑T
t=1 Ĥt(ψ̃, γ̃) = plim T−1

∑T
t=1Ht(ψ, γ).

Proof. Ĥt(ψ̃, γ̃) equals[
L ∆y1t−1fψ(β̂

′
yt−1, ψ̃)

∆y1t−1fψ(β̂
′
yt−1, ψ̃) ∆y21t−1

]

where L = fψψ(β̂
′
yt−1, ψ̃)(−∆y1t + f(β̂

′
yt−1, ψ̃) + γ̃∆y1t−1) + fψ(β̂

′
yt−1, ψ̃)2.

From Lemma C.4 and Assumption 5:

(a) plim T−1
∑T
t=1 ∆y1t−1fψ(β̂

′
yt−1, ψ̃) = plim T−1

∑T
t=1 ∆y1t−1fψ(β′yt−1, ψ̃)

(b) plim T−1
∑T
t=1 fψψ(β̂

′
yt−1, ψ̃)

[
−∆y1t + f(β̂

′
yt−1, ψ̃) + γ̃∆y1t−1

]
=

plim T−1
∑T
t=1 fψψ(β′yt−1, ψ̃)

[
−∆y1t + f(β′yt−1, ψ̃) + γ̃∆y1t−1

]
(c) plim T−1

∑T
t=1 fψ(β̂

′
yt−1, ψ̃)2 = plim T−1

∑T
t=1 fψ(β′yt−1, ψ̃)2

Therefore, we have established that plim T−1
∑T
t=1 Ĥt(ψ̃, γ̃) = plim T−1

∑T
t=1

Ht(ψ̃, γ̃). Usual nonlinear least squares approach, c.f. Wooldridge (2001), may

easily be used to establish plim T−1
∑T
t=1Ht(ψ̃, γ̃) = plim T−1

∑T
t=1Ht(ψ, γ).

These two equalities give us the result.

�
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