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Abstract

In econometric applications of the term structure, affine models are among the most used
ones. Nevertheless, even presenting a closed form characteristic function, its estimation
procedure still presents many points to be understood and difficulties to be removed.
In this note, we address one of these points. Suppose we estimate an affine dynamic
term structure model, and also apply principal component analysis to the interest rate
database available. A very plausible question would inquire about the relation (if any)
between the principal components obtained assuming no dynamic restrictions, and the
dynamic factors estimated using the proposed term structure model. We answer this
question when estimating a standard affine model using zero coupon data. We show
that each principal component can be approximated by a linear transformation of the
dynamic factors. Although simple, this is an important step to the understanding of the
mechanics of dynamic affine term structure models. A numerical example using U.S. zero
data illustrates the result.
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1. Introduction

The term structure of interest rates is a fundamental element for the whole
economy. It informs, for different maturities, the cost of borrowing money, being
directly related to macroeconomic variables and central bank decisions. In addi-
tion, there is an enormous number of term structure related securities, making it
an extremely important variable for market participants. For instance, in the U.S.
market, some of the possible fixed income instruments traded are: Treasury zero
coupon and coupon-bearing bonds, corporate bonds, mortgage-backed securities,
swaps, FRAs, caps, floors and swaptions (for a mathematical description of these
instruments see Brigo and Mercurio (2001)). These are some of the reasons why
both academics and practitioners demonstrate enormous interest in understanding
the sources that drive the term structure movements.

Affine term structure models have been intensively used to model the evolu-
tion of the term structure over time. In Vasicek (1977) seminal work, based in
no-arbitrage conditions, he proposes a Gaussian model for the short term rate
dynamics. Cox et al. (1985) proposed an equilibrium model and derived the short
term rate dynamics as being a square root process, which is also one of the basic
examples of affine processes. Some years later, empirical financial econometrists
proposed and estimated many multi-factor versions of the basic Vasicek, CIR and
combinations of these models, with the purpose of explaining stylized facts sup-
ported by data: Chen and Scott (1993) and Pearson and Sun (1994) estimate
Multi-factor CIR models by the direct Maximum Likelihood method; Pennacchi
(1991), interested in explaining the joint dynamics of interest rates and inflation,
estimates a multi-factor Gaussian model by Kalman filtering methods; Dai and
Singleton (2000) and Dai and Singleton (2002) classify the family of affine mod-
els, and estimate general three-factor affine models using Generalized Methods of
Moments and Approximated Maximum Likelihood Estimation. DS (2002) show,
through empirical implementation, that affine models are compatible with a time-
varying risk premium and,as a result, can capture the failure of the expectation
hypothesis (EH);1 Duffie et al. (2003b) estimate a mixed Gaussian/CIR model
to explain returns on Russian Brady bonds which are subject to default risk; and
Duarte (2004) implements a multi-factor CIR model with a general market price of
risk, using a combination of filtering techniques and Quasi-Maximum Likelihood,
with the intention of simultaneously explaining the first and second moments of
yields on U.S. swaps and treasury bonds. All these are dynamic models which
present predetermined stochastic differential equations describing the dynamics of
the factors driving the term structure movements, and which, in addition, impose
restrictions that rule out arbitrages in the market: There should exist a risk-neutral

1The failure of the EH has been largely documented in the literature. Some examples are:
Fama and Bliss (1987), Campbell and Shiller (1991) and Backus et al. (2001).
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measure Q, under which discounted bond prices are martingales.

On the other hand, principal component analysis (PCA) (Flury, 1988) has been
traditionally applied to term structures of interest rates to identify the main factors
driving the term structure movements. Since Litterman and Scheinkman (1991)
found that essentially three factors were enough to describe the movements of the
U.S. treasury term structure, PCA has been applied to many problems in financial
engineering: risk management as in Singh (1997), portfolio immunization as in
Barber and Copper (1996), identification of main driving forces of term structures
as in Heidari and Wu (2003), Collin and Goldstein (2002), and Almeida et al.
(2003), besides being a benchmark used to define the number of factors in dynamic
models. Whenever PCA is applied to yield levels,2 principal components inherit
the qualitative characteristics of yields, including autoregressive behavior with
near-unit roots (see Backus et al. (1999) or Diebold and Li (2003) for a discussion
on stylized facts of the term structure of interest rates). One justification given
by authors who apply PCA to the level of the term structure instead of to its first
difference or percent return, is that in the level case, factors are significantly more
persistent than errors, making their identification more precise (see Heidari and Wu
(2003), page 77). In particular, by contrasting PCA with dynamic term structure
models, no dynamic restriction to rule out arbitrages is imposed when estimating
the time series of the principal components, which can be considered a relaxation
of what is done in dynamic term structure models. Then a natural question arises:
is there any clear relation between principal components (unrestricted estimated
factors) and dynamic factors (restricted)?

In this note, we answer this question when the considered dynamic model is
affine. We show that the significant principal components of the term structure can
be well approximated by a linear transformation of the dynamic factors obtained
in affine models. This result proves to be interesting and practical, at least for two
reasons. First, it helps in the understanding of the operational mechanics of affine
models. For instance, consider the case where we compare the standard Maximum
Likelihood methodology3 to the new methodology proposed in Collin et al. (2003).
Collin et al. (2003) first calculate the principal components of the term structure,
and then they estimate three-factor dynamic affine models which match without
errors the first two or three principal components.4 In terms of fitting principal
components, how can we compare this methodology to the standard one? The

2See, for instance, Dai and Singleton (2000) and Heidari and Wu (2003). In addition, Dai
and Singleton (2002) qualitatively relate, for affine models, dynamic factors and principal
components, when PCA was applied directly to yield levels.

3It assumes that a specific set of yields, in a number equal to the number of factors, is
measured without error. Chen and Scott (1993) were the first to apply it.

4In the estimation process, when they match two principal components exactly, more weight
is given to the dynamics of yields, while when they match three principal components, more
weight is given to the cross-sectional fitting of yields.
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result in this note shows that when we estimate an affine process by the standard
methodology we are implicitly fitting the significant principal components with
error. Second, the results in this note are useful to inform differences and similar-
ities of dynamic affine models and simple PCA methods in the daily procedures
of financial institutions, such as risk management and portfolio optimization. We
can, for instance, propose upper bounds to the difference obtained for the risk
measured5 when in one case the principal components are used to generate the
portfolio probability density, while in the other case, the dynamic factors are used.
An important variable to be considered in this context is the order of the errors
in the approximation of the principal components by dynamic factors.6

The note is organized as follows. Section 2 briefly describes affine models
and the estimation method used. Section 3 presents the general idea of the ap-
proximation proposed (for any parametric dynamic term structure model), and
then introduces two different linear approximations of the principal components
by dynamic factors. Section 4 presents an empirical example where we estimate a
three-factor Gaussian model for the U.S. treasury term structure and implement
the linear approximations proposed in section 3. Section 5 concludes.

2. The Affine Mechanism

By precluding market arbitrages, assume the existence of an Equivalent Martin-
gale Measure Q under which bond prices discounted by the money market account
are martingales (see Duffie (2001) for details). Let Y denote the N-dimensional
state space vector characterizing the probabilistic uncertainty of the term struc-
ture of interest rates. Affine models are the ones whose short rate process is an
affine function of the state vector, rt = ρ0+ρ1Yt, and the risk-neutral dynamics (Q
dynamics) of the state vector also presents its drift and covariance matrix written
as affine functions of the state vector:

dYt = κQ(θQ − Yt)dt + Σ
√

StdW ∗
t (1)

where W ∗
t is an N -dimensional Brownian Motion under Q, κQ is the N ×N mean

reversion matrix, θQ is an N × 1 vector representing long-run mean, and S is a
diagonal matrix with Sii = αi + βT

i Yt, 1 ≤ i ≤ N , αi ∈ R, βi ∈ RN .7 Duffie and
Kan (1996) showed that the time t price of a zero coupon bond with maturity at
T is given by:

P (t, T ) = eγ(τ)+δ(τ)′Yt (2)

5Where we assume risk measured by the Value at Risk method (Jorion, 2000).
6We leave to the future, more to be explored in terms of the relation between principal

components, dynamic factors, and applications in the financial market.
7Let α and β respectively denote the row vector containing all αs and the matrix whose ith

row is βT
i

.
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where Yt is the state vector at time t, τ = T − t, and γ(.) and δ(.) solve the
following ODEs:

δ′(t) = ρ1 − κQδ(t) − 1
2δ(t)T H1δ(t), δ(T ) = 0; (3)

γ′(t) = ρ0 − κQθQδ(t) − 1
2δ(t)T H0δ(t), γ(T ) = 0; (4)

where ΣStΣ
T = H0 + H1Yt.

We can directly see that the yield of these zero coupon bonds will be given by:

R(t, T ) = −γ(τ)

τ
− δ(τ)′

τ
Yt = A(τ) + B(τ)′Yt (5)

A general theoretical description of the affine family is beyond the scope of this
note and is given in Duffie et al. (2003a).

2.1 What happens under the physical measure? The importance of

risk premia

So far we have only mentioned the behavior of affine processes under the risk-
neutral measure Q. On the other hand, Q should be seen just as a mathematical
instrument used to price derivatives while the “real world” movements happen
under the original (or physical) measure which we denote by P . Then, in order
to propose a full model we must specify a parametric form for the risk premia
demanded by investors who are holding “risky” bonds in the real world, where
the risk comes from the uncertainty about the interest rates. Risk premia are
completely captured by the market price of risk8 Λ, which is the volatility of the
state-price deflator.9 Λ can also be seen as the process which defines the Radon-
Nykodin derivative that directly relates the physical measure P to the risk-neutral
measure Q. The practical aspect which attracts our interest here is how the
Brownian Motion vectors under both measures are related:

W ∗
t = Wt +

∫ t

0

Λsds (6)

where Wt is an N -dimensional Brownian Motion under P .

In general, econometrists have preferred to restrict the parametric form of Λ
so as to maintain the P -dynamics of the state vector also affine. In general, that
does not need to be true for an affine model (see Duarte (2004) for an example

8Its interpretation is that, for a fixed maturity, it represents units of excess return earned
per unit of risk for a zero coupon bond with that maturity.

9The state price deflator (spd) is a positive process with the property that the price of any
market instrument deflated by spd is a martingale under the physical measure P .
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of semi-affine dynamics for the state vector under P ). The major advantage of
maintaining the P -dynamics affine is the availability of nice approximations for
transition densities of affine processes due to their closed form characteristic func-
tion (as in Duffie et al. (2003b) and Singleton (2001)). In an attempt to maintain
the affine dynamics under P , the first available affine models of Vasicek (1977),
CIR (1985) and variations, proposed the market price of risk as a multiple of
volatility, Λt =

√
Stλ, where λ is an N × 1 vector, and St is defined above. Then

from equations (1) and (6) we see that the drift under P would depend on the fol-
lowing extra term ΣStλ, which is also affine in Yt, maintaining the affine structure
under P . However, the parameterization of the risk premia as a multiple of volatil-
ity turned to be a problem when trying to match the empirical characteristics of
expected bond returns, basically because risk premia were not allowed to change
signs. More recently, Duffee (2002) has overcome this problem by proposing a
more general parameterization for the market price of risk. It divides prices of risk
into two sets: prices of risk for factors that drive the instantaneous volatility St,
and for factors that do not drive volatility. For factors that do not drive stochas-
tic volatility of the state vector, Duffee’s parameterization allows dependence of
their prices of risk on the whole state vector Y . Nonetheless, it still maintains
the previous rigid dependence of the prices of risk of volatility factors only in the
instantaneous volatility St itself. In this note, we adopt Duffee’s parameterization:

Λt =
√

Stλ0 +

√

S−
t λY Yt, (7)

where λ0 is an N × 1 vector, λY is an N ×N matrix, and S−
t is a diagonal matrix

defined by:

Sii−
t =

{ 1
Sii

t

, if inf(αi + βt
iYt) > 0.

0, otherwise.

}

(8)

Note that with the extra term in the parameterization, risk premia can depend
on more general linear combinations of elements in Y , namely ΣλY Yt and not on
simple combinations which model the instantaneous volatility ΣStλ0.

2.2 Model estimation: maximum likelihood

In theory, according to equation (5), conditioned on knowing the parameters
of the affine model, the vector of observed yields and the state vector are related
through a linear transformation. In practice, however, we usually observe more
yields than the number of dynamic factors that we propose and implement in the
model. Usually, we have a two- or three-dimensional state vector (dynamic factors)
and observe at least six yields. That is the usual number of yields adopted in
academic work using the U.S. term structure (see for instance, Duffie and Singleton
(1997), Duffee (2002), and Duarte (2004). In contrast, Almeida (2004a) fits a
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three-factor Gaussian model to the Brazilian swap term structure, using a set of
eight observed yields). It is clear then that at least one of the yields should be
measured with error, and more generally, we should make assumptions for the error
structure of all yields. One possibility is to assume that all yields are measured
with error. In this case, the state vector cannot be directly inverted from the
observed yields, and filtering techniques are mandatory. We refer the reader to
Pennacchi (1991), Lund (1997) and Duan and Simonato (1999) for term structure
estimation using the Kalman filter. Another possibility is to assume that there is
a one-to-one correspondence between the state vector and a subset of the observed
yields, which are assumed to be measured exactly. Once we fix the parameters,
the state vector can be inverted from that subset of yields by solving a linear
system obtained through equation (5). The majority of empirical works done
under this approach, restricted the market price of risk so that the state vector
also presents affine dynamics under the physical measure P . Just as suggested
in the previous subsection, approximation techniques for the likelihood function
make the Maximum Likelihood estimator a natural choice as estimation process.
The parameters are obtained by maximizing the likelihood of the observed yields,
which is a function of the likelihood of the state vector. Empirical work using this
approach include: Chen and Scott (1993), Pearson and Sun (1994), Duffie and
Singleton (1997), and Duffie et al. (2003b), among others.

In this note, we assume that estimation is accomplished by the Maximum Like-
lihood method, precisely as described above. The important point to be noted is
that once we obtain parameter estimates we are able to solve the ODE’s (3) and (4)
numerically and functions γ, δ will be readily available.10 So, after we obtain the

model parameters, yields are a linear function of the state. Moreover, we
see that affine processes essentially do not differ from consistent parametric models
of the term structure in the sense of Filipovic (1999) and Bjork and Christensen
(1999) (see De-Rossi (2004) for an application). With fixed parameters, affine
processes simply offer parametric functions A and B of the maturities, which re-
late the evolution of the term structure to the evolution of the state space Y in a
consistent way where discounted bond prices are Q-martingales.

For a detailed description of the implementation of the Maximum Likelihood
Estimator for a multi-factor Gaussian model, see the appendix in Almeida (2004a).
For details on the approximation of the transition density of affine processes with
stochastic volatility, see appendix B in Duffie et al. (2003b).

10In particular, note that we only need the risk-neutral drift, the short rate and the volatility
parameters represented by vector {κQ, θQ, ρ0, ρ1,Σ, α, β} to solve the ODE’s. In some particular
cases, as in the Legendre Dynamic Model, we have a previous assessment of the ODE solutions
without having specified the volatility parameters, which are free to be chosen to better fit the
dynamics of the term structure under P (see (Almeida, 2004b)).
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3. Principal Components and Dynamic Factors

The relation between principal components and dynamic factors has been stud-
ied before this paper in at least two different contexts. First, Frachot et al. (1992)
presented a theoretical description of this relation under an HJM model.11 Sec-
ond, Duffie and Kan (1996) presented a brief description of the relation between
latent factors and observed yields under their multi-factor affine model. Although
they have not mentioned principal components, they talk about factor rotations.
However, highlighting the importance of this paper is the fact that Frachot et al.
(1992) directly concentrate on HJM models and not on affine models, while Duffie
and Kan (1996) do not present any kind of empirical analysis of their work.

Another interesting point is that relations between principal components and
dynamic factors are not restricted to affine dynamic models.12 For this reason,
before getting to the details of the approximation presented in this paper, we
propose a general description of the relation between principal components and
dynamic factors in a general parametric model.

Later in this section, we show that, under the Maximum Likelihood estimation
approach, the non-negligible principal components for the term structure can be
approximately obtained by a specific linear transformation of the state vector.

3.1 Relation under a general parametric model

Suppose that we observe the yields of n zero coupon bonds with time to matu-
rity τ1, τ2, ..., τn, and that we intend to estimate a dynamic term structure model
with k dynamic factors. In order to be able to directly invert the state vector from
the observed data, we assume that a subset of k yields are measured without error,
while the others are measured with i.i.d. zero-mean Gaussian errors. Suppose in
addition that the parametric relation between the observed data and the state
vector is given by the following equation:

Robs
t (τi) = f(φ, Yt, τi) + ǫt(τi), i = 1, 2, ..., k. (9)

where f is a generic invertible function which might be non-linear and which char-
acterizes the measurement equation, Robs

t (τi) represents the τi-maturity observed
yield at time t, and ǫt is a vector of measurement errors which for all t is identically
null in the positions of the yields measured exactly, while in the other positions,
it presents i.i.d. Gaussian random variables.

The application of Principal Component Analysis to the historical set of ob-
served yields reveals the following relation between yields and principal compo-

11I am grateful to an anonymous referee for this reference.
12I thank an anonymous referee for pointing me in this direction.
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nents:
Robs

t − E[Robs] = Ψpct (10)

where Robs
t is a vector with all the time t observed yields stacked, Ψ is a matrix

containing the eigenvectors of the covariance matrix of Robs, and pct is a vector
containing the scores of the principal components at time t.

By fixing the vector of parameters φ in equation (9), and using equation (10)
to substitute vector Robs

t , we obtain:

f(φ, Yt) + ǫt = Ψpct + E[Robs] (11)

Extracting the vector pct from the last equation yields:

pct = Ψ′(f(φ, Yt) + ǫt − E[Robs]) = H + Ψ′f(φ, Yt) + noise (12)

where noise = Ψ′ǫt(φ̂), H = −Ψ′E[Robs]. If we neglect the noise term, we ob-
tain the following approximation of the principal components as a function of the
dynamic factors:

pct = H + Ψ′f(φ, Yt) (13)

The trick to obtain this nice theoretical relation consists in neglecting the noise
vector. For these results to have any validity we have to give empirical evidence
that confirms the relative small importance of the noise vector in the process. At
this point, the affine models present two direct appeals. First, the function f is
linear, giving a nice linear approximation of the principal components by dynamic
factors. Second, we are able to provide evidence that the noise is negligible when
the model is affine (as presented in the empirical section). The only limitation
that prevents anyone from obtaining general empirical results, regarding these
approximations for more general dynamic term structure models, is the effective
implementation of such models.

3.1.1 Relation when the dynamic model is quadratic

Before concentrating on the affine model, it is interesting to sketch the ap-
proximation for a second particular case of dynamic term structure model: The
quadratic term structure model. Longstaff (1989) and Beaglehole and Tenney
(1991) were pioneers in the exploration of quadratic term structure models. In
these models the term structure of interest rates is parameterized as a quadratic
function of the state vector (for a complete theoretical characterization, see Leip-
pold and Wu (2002); for practical applications, see Leippold and Wu (2003). One
of its advantages is the capability to naturally generate positive interest rates, in
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contrast to some affine models as, for instance, the multi-factor affine Gaussian
models that present positive probability of attaining negative interest rates.

In Beaglehole and Tenney (1991), the model measurement equation is given
by:13

Robs
t = A(φ) + B(φ)′.Yt + Y ′

t C(φ).Yt + ǫt (14)

For this model, the particularization of equation (13) becomes:

pct = H + Ψ′(A(φ) + B(φ)′.Yt + Y ′
t C(φ).Yt) (15)

which gives the principal components as a quadratic function of the latent vari-
ables, once the model has been estimated.

3.2 Relation when the dynamic model is affine

Let A(φ) = [A(τ1), A(τ2), ..., A(τn)]′ and B(φ) = [B(τ1) B(τ2) B(τn)] be re-
spectively an n × 1 vector and n × n matrix coming from equation (5) applied to
each maturity. The measurement equation for the affine model is given by:

Robs
t = A(φ) + B(φ)′Yt + ǫt (16)

where exactly as before, Robs
t represents the vector of observed yields at time t,

and ǫt is a vector of measurement errors which for all t is identically null in the
positions of the yields measured exactly, while in the other positions, it presents
i.i.d gaussian random variables.

In the estimation process, the optimizer chooses φ̂ so as to maximize the log-
likelihood function, in equation (16). Once fixed φ̂, the estimated value for the

parameter vector φ, A(φ̂) and B(φ̂) generate functions of maturities whose shape

is specifically defined by vector φ̂. Moreover, the residuals in the term structure
fit (estimated errors) can be directly obtained from:

Robs
t = A(φ̂) + B(φ̂)′Yt + ǫ̂t(φ̂) (17)

3.3 First linear approximation: discarding the residuals of the model

fitting procedure

At this point we can substitute equation (17) in (10) to obtain:

pct = Ψ′(A(φ̂) − E[Robs] + B(φ̂)′Yt + ǫt(φ̂)) = H + GYt + noise (18)

13I kindly thank an anonymous referee for this example.
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where noise = Ψ′ǫt(φ̂), H = Ψ′(A(φ̂)−E[Robs]) and G = Ψ′B(φ̂)′. We obtain our
first approximation by discarding the noise term thus getting:

p̂ct = H + GYt (19)

We will see below that typical error fits ǫt(φ̂) when estimating affine processes
oscillate between 1% and 5% of the original yields. As the noise is obtained through
a linear transformation of the error fits, where the linear transformation presents
weights coming from normalized vectors (namely the eigenvectors of cov(Robs)),
typical noise will have the same order of the error fit.
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Figure 1
Comparing the magnitude of error fits and noise for the U.S. treasury term structure

Just as an informative illustration before the empirical section, figure 1 shows
respectively the error fits and transformed error fits (noise) for the three-factor
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Gaussian model estimated for the U.S. treasury term structure. Compare the
order of the error fits and noise to the order of the yield values which appear in
figure 2 to see that the percent range proposed for the error fits of 1-5% applies in
this case.
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Temporal evolution if the U.S. term structure of interest rates

3.4 Second linear approximation: discarding non-significant principal

components

Assume that although we observe n yields, there are only k significant principal
components driving the movements of the term structure. In this subsection, we
discard the remaining n − k principal components and propose another way of
relating principal components and dynamic factors.

Let τexact denote the maturities of the k bonds priced without error, and Aexact

and Bexact respectively the coefficients for these maturities in equation (17). Using
this equation, noting that residuals are zero by construction, we obtain:

Rτexact = Aexact + BexactYt (20)

On the other hand, when we discard the negligible principal components,14 in
equation (10), the relation between the significant principal components and all

14Negligible here has the following qualitative meaning: we only keep principal components
attached to eigenvalues of Cov(R) that explain more than a predetermined fixed threshold of the
term structure variance: 0.1% of the variance is used as the threshold in this work.
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the observed yields is given by:

Robs
t − E[Robs] = Ψsubpcsub

t + θt (21)

where Ψsub and pcsub respectively represent the subsets of the first k eigenvectors
and k first principal components of the term structure R, ordered by the impor-
tance in explaining its variance, and θ is an error term introduced by discarding
the last n − k principal components. In particular, note that to restrict equation
(21) to the subset of yields measured without error, we only need to select the rows
of Ψsub corresponding to those yields, and stack them in a new matrix, which we
name Ψsub

exact. Rewriting equation (21) for the yields priced without error, we get:

Rτexact − E[Rτexact ] = Ψsub
exactpcsub

t + θt(exact) (22)

where θ(exact) represents the subset of the error vector θ related to the variables
priced without error. Note that the error term is not zero for the subset of exact
yields because it comes from discarding non-significant principal components and
not from the model measurement equation (20), which presents zero error by
construction.

Combining equations (20) and (22) we obtain:

pcsub
t = (Ψsub

exact)
′(Aexact−E[Rτexact ]+B′

exactYt−θt(exact)) = I+JYt+noise2 (23)

where noise2 = −(Ψsub
exact)

′θt(exact), I = (Ψsub
exact)

′(Aexact − E[Rτexact ]) and J =
(Ψsub

exact)
′B′

exact.

Again, we discard the noise and obtain the approximation:

ˆpcsub
t = I + JYt (24)

Here we artificially introduce errors when we assume that we are going to
approximate the movements of the term structure by using fewer principal com-
ponents than are available (in our applications, we discard three principal com-
ponents and use three). This error might have a slightly different order from the
error introduced by the model when pricing yields were measured with error. For
this reason, testing both approximations might be worth.

4. Empirical Example

In this empirical exercise, data basically consist of the same database used in
Dai and Singleton (2002): 312 monthly observations on U.S. treasury zero-coupon
bond yields for maturities of 2, 3, 5, 7, and 10 years, together with the 6-month
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LIBOR, covering the 1970-1995 period.15 Figure 2 presents the U.S. term structure
evolution. On the cross-sectional side, it is flat (a little inverted) throughout the
sample period. From a time series perspective, it shows a lot of variation, achieving
both its minimum and maximum values on the LIBOR maturity (six months):
minimum in 1981 when the 6-month LIBOR was 2.88% and maximum in 1992
when it was 16.2%. Figure 3 presents the first three principal component loadings
for this curve, when PCA is applied to the yield levels. Unsurprisingly, they
respectively represent level, slope, and curvature factors. Together, they explain
99.99% of the term structure variation. The principal component related to the
level explains 96.4%, the one related to the slope explains 3.4%, and the curvature
factor explains merely 0.19% of the variation.

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Principal Components of the U.S. Zero Curve

Maturity (Years)

pc 1 

pc 2 

pc 3 

Figure 3
Loadings of the significant principal components for the U.S. term structure of interest

rates

We estimate a three-factor Gaussian model using the Maximum Likelihood
method, assuming that the 6-month LIBOR rate and zero coupon treasury rates
with maturities of 5 and 10 years are priced without error, while the remaining zero
coupon, with maturities of 2, 3, and 7 years are assumed to be priced with i.i.d.
zero-mean Gaussian errors. The maximum value achieved by the log-likelihood
function was of 37.46. Table 1 presents the estimated parameters as well as their
standard errors, obtained by the Outer Product (BHHH) method. Note that all
the parameters are significant at a 95% confidence level. Table 2 presents mean

15It is usual to construct the U.S. term structure of interest rates by a bootstrap procedure
that simultaneously makes use of short-term LIBOR rates and U.S. treasury bond data (see
Brigo and Mercurio (2001)).

102 Brazilian Review of Econometrics 25(1) May 2005



A Note on the Relation Between Principal Components and Dynamic Factors in Affine
Term Structure Models

and standard deviation of the residuals of the cross-sectional fits for the maturi-
ties assumed to be priced with error. Residuals present acceptable standard errors
when compared to other empirical studies (for instance, see Duffie and Singleton
(1997) or Dai and Singleton (2002)). Figure 4 presents, for each maturity whose
yields were measured with error, the correspondent daily yield variations jointly
with the daily residuals obtained by the dynamic model when fitting that yield.
For maturities 2, 3, and 7 the ratio standard error of residual

standard error of data in first difference , was, respec-
tively, 23.5%, 14% and 4%. Although we have applied PCA to the yield levels,
these values give qualitative indication of the order of the error in the approxima-
tion of the principal components by a linear transformation of the state vector,
if we had applied PCA to the first difference of yields. Figures 5 and 6 respec-
tively present functions B and A which appear in equation (5) and directly express
the relation between yields and state variables. Note that, in the nomenclature
of Litterman and Scheinkman (1991), the dynamic factor Y1, whose loadings are
represented by function B1,works as a level factor, while factors Y2 and Y3 with
respective loadings B2 and B3 work as different slope factors.

Table 1
Parameters and standard errors for the A0(3) on the U.S. treasury term structure

Parameter Value Standard error Ratio V alue

Std

κ11 0.007295 0.002271 3.2
κ12 -0.05655 0.01304 4.3
κ22 0.6552 0.2435 2.7
κ33 0.4684 0.01816 25.8
Σ11 0.00487 0.0070 3.7
Σ22 0.03867 0.0031 26.9
Σ33 0.03361 0.0020 17.2

λ0(3) -1.411 0.3773 3.7
λY (3, 1) -16.79 8.191 2.0
λY (1, 2) 25.67 5.72 4.5
λY (2, 2) 72.93 8.261 8.8
λY (2, 3) 5.113 2.309 2.2
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Comparing the magnitude of yield variation to the error in fitting these yields
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Figure 5
Loadings of the affine model implied dynamic factors – function B(τ )
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Function A(τ ) implied by the affine model
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The approximations in writing the principal components as a linear transfor-
mation of the state vector work well for the 30 years of data from the U.S. zero
curve. In order to see that, we first plot in figure 7 the time series of each prin-
cipal component and the correspondent state variable16 from the original state
vector. Dashed lines represent state variables. We calculate correlation coeffi-
cients between the ith principal component and ith state variable, and respectively
obtained -0.884, 0.775 and 0.65. Looking at the pictures and also at these num-
bers we see that principal components and dynamic factors are very related to
each other. Actually, we want to convince the reader that they are simply par-
ticular linear transformations of one another chosen by the optimization process
when fixing model parameters to maximize the likelihood function, as proposed in
section 3.

In order to empirically test the approximation from subsection 3.3, we plot in
figure 8 each significant principal component (pc) together with its approximation,
the linearly transformed variable obtained using equation (19), where dashed lines
represent approximation. Note how hard it is to distinguish pc from the

approximated pc, for the first two principal components. The correlation
coefficients achieved between the first three principal components and their ap-
proximations were respectively 0.9999, 0.9998 and 0.9056. However, although we
have a high correlation coefficient between the third principal component and its
approximation, the approximation does not work so well for this principal com-
ponent. The reason is simple: as this principal component explains only 0.19% of
the variation in the term structure, its magnitude is not that different from the
order of the residuals obtained from the yields measured with error. Then we see
that although we cannot approximate the third principal component very well it
does not play an important role in the dynamics of the term structure.17 A clearer
vision of the approximation of the first two principal components can be obtained
in Figure 9 where we plot the relative error between the principal component and
its approximation. For the first principal component, the approximation differs
by more than 10% of its value only in 5.77% of the months. As for the second
principal component, differences between the component and its approximation
are bigger than 10% in 12.18% of the months. For any particular principal com-
ponent, the biggest relative differences happen in months where its value is close
to zero and the model fitting errors play a role.

16For pc1 we plot it against minus the first state variable because they are negatively corre-
lated.

17The eigenvalue associated with the third principal component indicates that the U.S. zero
curve, for the period analyzed, could have had almost all its movements captured by a two-factor
model.
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Translated principal components and state variables
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Translated principal components and linearly transformed state variables
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For the approximation reported in subsection 3.4, the results were a little supe-
rior to the ones obtained using the approximation from subsection 3.3. Compare
the relative error for the approximation of the first two principal components in
figures 9 and 10, and note that errors present a slightly smaller magnitude in figure
10. In addition, correlation achieved between the first three principal components
and their approximations were respectively 0.9999, 0.9998 and 0.9343, slightly out-
performing the approximation for the third principal component from subsection
3.3. The reason for that is that when we discard principal components 4, 5 and 6
the order of the error θ in the approximation of the yield movements is of three
basis points as can be seen in table 3, reasonably smaller than the 13 and 7 basis
points standard errors of the residuals of the two and three year yields, obtained
for ǫ, the dynamic model error discarded in the approximation of subsection 3.3.

Table 2
Statistics for the error fits of the dynamic affine model

Maturity (Years) Mean (bp) Std (bp)
2 2.5 13.0
3 2.0 7.0
7 0.5 2.0

Table 3
Statistics for the error θ in yields, obtained when discarding principal components 4, 5

and 6

Maturity (Years) Mean (bp) Std (bp)
0.5 0 0.6
2 0 3.2
3 0 1.5
5 0 3.2
7 0 2.0
10 0 3.0
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Figure 9
Relative error in the first linear approximation of the principal components
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Relative error in the second linear approximation of the principal components.

5. Conclusion

In this note, we show that the linear structure embedded in dynamic
affine term structure models directly translates into an approximation of the non-
negligible principal components by linear transformations of the state vector. The
smallest the model fitting errors, the better the approximation. A second approx-
imation is also proposed and tested where we discard the non-significant principal
components and use only the yields measured without error to linearly relate the
significant principal components to the state vector. In spite of describing a small
result, this note helps in the understanding of the operational structure of dynamic
affine term structure models. Although such models have been intensively used
by the empirical finance community due to their tractability, there are still many
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details to be understood regarding their precise implementation. In a future exten-
sion, we intend to describe the role of unspanned stochastic volatility (see Collin
and Goldstein (2002) and Collin et al. (2003)) in breaking the linear dependence
between state vector and principal components, in dynamic affine models.
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