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Abstract 

In this paper we examine certain properties of the Dow Jones and the 

Nikkey indices, investigating the existence of stochastic and deterministic non­
linear structures. Using the detrended fluctuation analysis, we construct a local 
measurement of randomness which identifies some extreme events and their im­
pact on the randomness of the systems. Our results suggest no evidence of chaos 
in the data. In fact, GARCH processes explain most of the nonlinear dependence 

in the Dow Jones daily returns and the estimated Kolmogorov entropy for the 
Nikkey index diverges, conversely to what one would expect if the data followed 
a chaotic dynamics. 

Resurno 

o artigo investiga algumas propriedades dos indices de a�oes Nikkey e Dow 
Jones, tais como a existencia de estruturas nao-lineares deterministicas e es­
tocasticas. Usando 0 metoda "detrended fluctuation analysis" , construimos uma 
medida local de aleatoriedade que identifica alguns eventos extremos e seus im­
pactos na aleatoriedade dos sistemas em estudo. Os resultados nao sugerem 
evidencia de caos nos clades. De fato, processes GARCH explicam a maior parte 
da dependencia nao-linear nes retornos diaries do Dow Jenes enquanto que a 
entropia de Kolmogorov estimada para ° indice Nikkey diverge, evidenciando 
assirn urn sistema estocastico para este indice. 
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1. Introduction. 

During the past three decades a large number of papers have 
been published on the source of the instability in financial time se­
ries. Numerous studies have investigated their stochastic proper­
ties. The empirical evidence suggests that stock returns are not nor­
mally distributed, have fat tails, display nonlinear dependence and 
non-periodic cycles. Leptokurtic distributions have been observed in 
stocks and indices by analyzing both high-frequency and daily data. 
The origin of the observed leptokurtosis is still in debate. To account 
for nonlinear dependence, several researchers have been tried to ex­
plain it in terms of stochastic models that are nonlinear in variance 
such as ARCH and stochastic volatility models. The phenomenon of 
non-periodic cycles in financial markets was firstly studied by Man­
delbrot (1971) who considered the possibility and implications of 
persistent financial time series. It is well known that such series are 
characterized by distinct but non-periodic cyclical patterns. Since 
then, several empirical studies have lent further support to Man­
delbrot's findings. In fact, the most studies have investigated these 
properties with an underlying stochastic system. The interest is to 
recover the natural notion of instability or randomness multiplication 
in data generating processes. 

Since the 1980s it has been recognized in the physical sciences 
that unpredictable time series and stochastic processes are not syn­
onymous. Specifically, chaos theory has shown that unpredictable 
time series can arise from deterministic nonlinear systems. This ob­
servation raises the question concerning the mechanisms that gener­
ate observed, apparently stochastic, financial time series. In this way, 
an important reason for the interest in chaotic behavior is that it can 
potentially explain fluctuations in financial markets which appear to 
be random. So there is need to test for the presence of chaos. 

As for the main conclusions of the literature, there is a broad con-
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sensus of support for the preposition that stock returns are charac­
terized by a pattern of nonlinear dependence. On the other hand, the 
evidence on chaos is more mixed. Scheinkman and LeBaron (1989) 
analyzed stock markets, and Vaidynanathan and Krehbiel (1992) in­
vestigated S&P 500 index, all finding evidence of chaos. Mayfield 
and Mizrach (1992) find evidence of chaos in high-frequency returns 
in the S&P 500 cash index. Abhyankar et al. (1995) examine the 
behavior of the U.K Financial Times Stock Exchange 100 (FTSE-
100) index over the first six months of 1993 (using 1-, 5-, 15-, 30-, 
and 60-minute returns. They find evidence of nonlinearity, but not 
of chaos. Abhyankar et al. (1997) test for nonlinear dependence 
and chaos in real-time returns on the world's four most important 
stock market indexes - FTSE-lOO, S&P 500, the Nikkey 225 Stock 
Average and the Deutscher Aktienindex (DAX). Using the BDS and 
the NEGM test, they reject the hypothesis of independence in fa­
vor of a nonlinear structure for all series, but find no evidence of 
chaos. More recently, Barkoulas and Travlos (1998) test for chaos 
in an emerging stock market, the Athens stock exchange (Greece) , 
and find weak evidence in support of a nonlinear deterministic data 
generating processes or chaos. In fact, much disagreement and con­
troversy have arisen about the available results, not only in stock 
returns but also in general economic data. Results may be difficult 
to find that are consistent across variations in sample size, testing 
approach and aggregation. 

The primary goal of this paper is to investigate how much of 
the apparent randomness in the time series pattern of returns is ex­
plicable by a chaotic process. In order to investigate the intrinsic 
randomness of the system, we present here a method to sort out 
temporal correlations in financial time series within the de trended 

fluctuation analysis (DFA) statistical method proposed by Peng et 
al. (1994). This method has demonstrated its usefulness in the in-
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vestigations of long-range dependence in DNA nucleotide sequences 
and heartbeat time series. We employ the concepts of correlation 
dimension and Kolmogorov entropy to search for a chaotic structure 
in the Dow Jones and the Nikkey daily returns. This study is im­
portant for two reasons. First, since there is much controversy on 
the evidence of chaos in stock returns, we revised this question inves­
tigating two important indices that were not investigated with the 
methods used in this paper. In fact, it is important to investigate the 
dynamics of two indices that represent different economies of great 
importance. Second, we present here a method commonly used in 
statistical physics in order to investigate the underlying randomness 
from a time series and its sensibility to local trends. This method 
can be useful to understand large fluctuations in financial markets. 
The next section describes deterministic chaos and its diagnostics. 
Section 3 discusses some randomness tests and reports their results. 
Section 4 reports the results from the chaos analysis. The last section 
summarizes the findings and discusses the significance and implica­
tions of the research. 

2. Presence of Chaos. 

Chaos deals with the irregular behavior of solutions to deter­
ministic equations of motion. The equations must be nonlinear to 
generate chaotic solutions, but apart from that can be remarkably 
simple. Chaotic solutions are only accurate for a length of time 
governed by the errors on initial conditions. In many cases chaotic 
solutions relax on to a strange attractor which has a fractal structure 
and typically a non-integral dimension. 

According to Brock et al. (1991), the time series {Xt} has a 
C2 deterministic explanation if there exist a system (h, F, wo) such 
that Xt = h(wt), Wt+l = F(wt), w(O) = wo, where h: wn --t WI, 
F : wn --t wn are both in the C2 class. Furthermore, we require that 
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F have an ergodic invariant measure w that is absolutely continuous 
with respect to the Lebesgue measure. The interest lies in recov­
ering the market dynamics by analyzing the time series {Xt}. The 
dimension of the attractors of systems with many degrees of freedom 
may increase rather rapidly after the transition to chaos. There is 
the problem of how to estimate the dimension of the strange attrac­
tors which underlies an irregular time series generated by a system 
with many degrees of freedom. Dimension estimation is an impor­
tant problem because, if the time series exhibits low dimensional 
behavior, then it should be possible to model the underlying system 
accurately and hence obtain insight into the behavior of the system. 

Techniques of state space reconstruction were introduced by 
Packard et al. (1980) and Takens (1981), which show that it is 
possible to address this problem of dimension estimation as follows. 
Suppose that a scalar time series {Xt} is generated by an N - dimen­
sional attractor of a deterministic dynamic system with n degrees of 
freedom and define an m-dimensional vector constructed from the 
observed time series 

where Fm-1 is the composition of F with itself m - 1 times in equa­
tion (1). Since the true system that generated the time series is 
n-dimensional, Takens (1981) proved that for smooth pairs (h, F) 

the map 1m : �n -> �m will be an embedding map for m ;::0: 2n + l. 

Taken's theorem guarantees that if the embedding dimension m is 
sufficiently large with respect to the dimension of the manifold on 
which the attractor lies, the m-dimensional image of the attractor 
provides a correct topological picture of its dynamics. In particu­
lar ,  the dimension of the reconstructed attractor is N, regardless of 
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the value of m, and is invariant with respect to the measurement 
function h. 

2.1 Correlation Dimension. 

There are a number of procedures to distinguish a deterministic 
chaotic process from a truly random process. According to Grass­
berger and Procaccia (1983a, 1984), one of the efficient ways to test 
for chaos is to consider the correlation integral, which is a measure of 
spatial correlation of scattered points or particles in m-dimensional 
space, using the statistic 

Cm,T (c) = LIe (x;n,x:,,) X [2/Tm (Tm-1)], (2) 
T<S 

where Tm = T - (m - 1), xl." = (Xt, ... , Xt+m-l), Xt being a 
time series, and Ie (xl.", x:") an indicator function which equals 1 
if Ilxl." - x:"11 < c and 0 otherwise. Here, {Xt} is a scalar time 
series under scrutiny for randomness. In order to use (2) to mea­
sure intertemporal local correlation and other kinds of dependence, 
one imbeds {Xt} in an m-dimensional space by forming m-vectors 
xl." = (Xt, ... , Xt+m-l) starting at each date t. 

For a deterministic chaotic system, as T --> 00 

(3) 

for almost all initial conditions. The quantity in (3) is called the cor­
relation integral which is the probability that two points are within 
a certain distance from one another. As Grassberger and Procac­
cia (1983a, 1984) showed with c --> O,Cm (c) � c

V
, where v is the 

correlation exponent. The definition of correlation dimension in an 
embedding dimension m is 
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dm = lim lim log [Cm,T(e)] jlog(e). 
c-OT--+oo 

(4) 

The correlation dimension itself is given by 

(5) 

and Grassberger and Procaccia (1983a, 1984) showed that 

(6) 

where A is a constant. The estimate of v as m --+ 00 provides the 
correlation dimension estimate of the dynamic system. For m :::: 2n+ 

1, Brock (1986) showed that the correlation exponent is independent 
of both the norm used and the embedding m. 

The dimension of the dynamic system is determined by first es­
timating the slope of the regression line of log2Cm (e) on log2e and 
an intercept for each embedding dimension m. If as m increases v 

continues to rise, then the system is stochastic. If, however , the data 
are generated by a deterministic process consistent with chaotic be­
havior, then v reaches a finite saturation limit beyond some relatively 
small m. In principle, we can detect any form of deterministic chaos, 
given enough data. However, in practice there is never enough data 
to detect high-dimensional chaos, so the best we can do is to detect 
low-dimensional chaos. 

Consider again 

Cm,T(e) = LIe (x;", x;') X [2jTm (Tm-1)], (7) 
T<S 

where Tm - T - (m - 1) . The limit of (7) exists almost surely 
under mild stationarity and ergodicity assumptions. Denote this 
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limit by Cm(c:). If the process {Xt} is i. i. d. , it can be shown that 
Cm(c:) = [c1 (c:)m] for all m and 10. Brock , Dechert, LeBaron and 
Scheinkman (1996) proposed the BDS test, which is based on the 
following statistic: 

(8) 

where ilm,T(C:) is an estimate of the standard deviation under the 
i. i.d. null hypothesis. They showed that, under the null hypothesis 

of i. i.d., Wm,T(C:) !:.., N (0, 1) as T --> 00. However, the asymptotic 
distribution is not appropriate when the test statistic is computed 
using standardized residuals of ARCH models. 

The BDS statistic appears to have good power against simple 
nonlinear deterministic systems as well as nonlinear stochastic pro­
cesses. It is important to point out that additional diagnostic tests 
are needed to determine the source of the rejection of the null hy­
pothesis. It should be emphasized that this test is not capable 
of distinguishing nonlinear stochastic dynamics from deterministic 
chaotic dynamics, although the rejection of the null hypothesis may, 
of course, motivate the investigation of chaotic models. 

2.2 Kolrnogorov Entropy. 

In addition to estimating dimension, we can estimate the Kol­
mogorov entropy K for the system, which measures the mean rate of 
creation of information. The condition of sensitivity to initial con­
ditions that is characteristic of chaotic systems implies divergence of 
initially adjacent dynamic states. W hile an initial state of the system 
may be known with a high but finite degree of precision, the ability 
to predict later states diminishes because of trajectory divergence. 
Information is lost, or conversely, more information is required to 
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specify the system with the original precision; the entropy has in­
creased. 

Grassberger and Procaccia (1984) showed that the vertical 
change in the position of the invariant portion of the correlation 
integral over the scaling region in c is a lower bound estimate of 
Kolmogorov entropy. They defined 

(9) 

where Cm(c) is defined as before and T is the delay time between 
observations, and showed that 

(10) 

where K2 is order-2 Renyi entropy, which is a lower bound esti­
mate of Kolmogorov's entropy (K2 :::; K). Grassberger and Procac­
cia (1983b) suggest that K2 is preferable to K. However, there are 
some practical limitations on the implementation of K2. The fact 
that the length of the time series is finite is perhaps the most seri­
ous difficulty. Due to the finiteness of the time series, as m -7 00, 

the correlation integral will be reduced to counting only the points 
themselves. Accordingly Cm(c) and Cm+l(c) will each converge to 
the same value, and then Inl = O. Consequently, if one examines 
too large an embedding dimension then the estimated value of K2 
will be biased towards zero. 

Kolmogorov entropy provides a way of categorizing the motion 
of dynamic systems. If K2 = 0, then the motion is regular (periodic, 
quasiperiodic, or stationary). If K2 > 0, then the motion is chaotic, 
and if K2 = 00, then the motion is stochastic. 
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3. Randomness Tests. 

We employ some randomness tests in order to investigate the 

nature of the underlying randomness of the system. It should be 

noted that if the series exhibit long memory, then there is persis­

tent temporal dependence between distant observations. Such series 

are characterized by distinct but non-periodic cyclical patterns like 

chaotic processes. The presence of long memory dynamics, which is 

a special form of nonlinear dynamics, leads to nonlinear dependence 

in the first moment of the distribution, and hence to a potentially 

predictable component in the series dynamics. 

At the outset, we consider one of the best-known methods, the 
RI S analysis. This method, proposed by Mandelbrot and Wallis 

(1968) and based on previous hydrological studies of Hurst (1951), 

allows the calculation of the self-similarity parameter H. The RI S 
statistic is the range of partial sums of deviations of a time series 

from its mean, rescaled by its standard deviation. The resulting 
ratio is known as the rescaled range RIS. In fact, the RIS statistic 

asymptotically follows the relation 

(RIS)n "" CnH, (0 < H < 1, C E IR E) (11) 

where H = 0.5 indicates short memory in the series, H > 0.5 indi­
cates persistence and H < 0.5 indicates anti-persistence. 

The second method we have used to measure randomness is the 
detrended fluctuation analysis (DFA) proposed by Peng et al. (1994) 

for sorting out temporal correlations in DNA sequences in biologi­

cal studies. Later, several studies have been performed in heartbeat 

time series and also in many areas of statistical physics [see Blesic et 
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al. 1999, Absil et al. (1999) and Ivanova and Ausloos (1999)]. Re­
cently, a growing number of physicists have attempted to analyze the 

fluctuation in financial markets using the DFA method [see Ausloos 

(2000) and Janos et. Al (1999)]. The method can be summarized as 

follows. Consider a time series of returns x(t), t = 1, ... , T. First, 

the integrate time series y(t') is obtained, y(t') = I:��1 x(t). Next, 
we divide the y( t'), into windows of equal length m. It is not possible 

in general to divide exactly the T points of the series into windows of 

length m. For each value of m, we call t the larger multiple of m in­

ferior or equal to T. A least-squares line is fitted to the data in each 

window. The y coordinate of the straight line segments is denoted 

by yc,;:). Next, the root mean square fluctuation of the integrated 

and detrended time series is calculated: 

[ - 1 1/2 

G(m) = �t;;, [y(t') - Ym(t,)]2 (12) 

This calculation is repeated over all intervals. A linear relationship 

on a double log graph of G(m) and the interval size (window) m 
indicates the presence of a power-law scaling. Similarly to the Hurst 

analysis, if there is no correlation or only short memory G(m) "" m"', 

with a = 1/2. An exponent value a >  1/2 is usually associated with 

persistence and a < 1/2 with anti-persistence. Some of the DFA 

main advantages over other techniques like Fourier transform or R/ S 

methods are that (i) local and large-scale trends are avoided at all 

scales m in equation (12), and (ii) local correlations can be easily 

proved. 
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3.1 Fluctuation Analysis and Randomness. 

Our data consists of the Dow Jones and the Nikkey daily re­

turns. The time period ranges from December 28, 1986 to October 

20, 2000. Table 1 reports summary statistics for the two series. All 
series have fat tails. The kurtosis coefficients are all substantially 

larger than that of the standard normal distribution. Jarque-Bera's 

X2 statistic, which summarizes the joint deviation of the third and 

fourth moments from those of a normal distribution, is strongly sig­

nificant as a result. The significant deviation from normality can be 

an indication of nonlinear dynamics. 

Table 1 

Descriptive Statistics of Daily Returns 

Mean Daily return 

Standard Deviation 
Skewness 

Kurtosis 

Jarque-Bera Test (P-Value) 

Dow Jones 

0.0002 

0.0048 
-3.655 

83.80 

0.000 

Nikkey 

-2. 73E-05 

0.0066 
0.158 

11.77 

0.000 

Table 2 gives the results of the traditional R/ S analysis and 

DFA results. For the Dow Jones daily returns the estimated Hurst 

exponent is 0.5, which means that there is no evidence of long-range 

correlations. However, the estimated Hurst exponent for the Nikkey 

index is 0.66 representing a long-range correlation property. The 

results of the DFA analysis represented by the a exponent exhibit 

always smaller exponents than the ones obtained with the traditional 
R/ S analysis. The obtained exponents indicate anti-persistence be­

havior in both indices. 
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Table 2 
Long-Term Memory Analysis 

H 

0.50 

0.66 

0.45 

0.47 

Notes:H is the Hurst exponent in the equation (11) and 0: is the exponent from 

the DFA analysis. 

In order to investigate the a exponent over time and some visible 

"random" pattern in these markets, we first constructed a "window 

observation" of length 6 months placed at the beginning of the data, 

and we computed a for the data contained in that window. Then, we 

moved this window by 120 points (6 months) toward the right along 

the financial time series and again computed a. Iterating this pro­
cedure for the 1987 - 2000 series, we obtained a local measurement 

of randomness for the Dow Jones and Nikkey indices. The results 

are shown in figures 1 and 2. Figure 1 (b) reports the calculations 

for the Nikkey index where the a exponent value is mostly below 0.5 
reflecting the estimated value (0.47) without the constructed "win­
dow observation" . Clearly, there are some extreme events such as 

the October crash in 1987 and the period of the Gulf War in the 

1990s. These events and the subsequent periods coincide with the 
smallest value exponent. Also, these events divide in two parts the 

pattern information propagation over time. After these periods, the 
exponent value is more stable ranged between 0.4 and 0.5. However, 

there are some potential outliers even in these periods. Notice a 
pattern of the exponent between June 26,1993 to June 26, 1995 and 

1997 to June, 26, 2000. In these periods, in principle, investors could 
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partially predict the future movements of the Nikkey, at least for a 

short horizon of 6 months. 

Figure 2 (b) reports the calculations for the Dow Jones index 

where the a exponent value is again mostly below 0.5 reflecting the 
estimated value (0.45) without the constructed "window observa­

tion". Again the magnitude of the October crash in 1987 and the 

subsequent periods are well visible in the exponent value. However, 

we cannot detect a visible pattern in the exponent dynamics. Also, it 

should be noted that there exist some events such as the Mexico crisis 

occurred in the middle of 1994 that cause an abrupt decay on the ex­

ponent but did not in the Nikkey case. This observation reflects the 

idea that each market has a unique information propagation process. 

These results motivate several questions about the nature of the 

underlying dynamic systems. It seems that the Dow Jones index 

is more unstable than the Nikkey index, considering that the Dow 

Jones exponent dynamics does not demonstrate a clear pattern over 

the intervals of 6 months. On the other hand, the results from the 
Nikkey reveal visible trends in the exponent dynamics over the entire 

interval that could be used to predict the future movements of this 
market in a relatively short time interval of 6 months. Given the 

points raised above, we will test for the presence of chaos in these 

markets. 

336 Brazilian Review of Econometrics 21 (2) November 20Gl 



Alberto Masayoshi F. Ohashi 

Figure 1 (a) - Nikkey Index 
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Figure 1 (b) - DFA Analysis 
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Figure 2 (a) - Dow Jones Index 
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Figure 2 (b) - DFA Analysis 
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4. Nonlinearity and Chaos. 

To ensure that we truly capture any nonlinear structure present 

in the data, we should apply the correlation dimension method on 

stationary data. If the data are nearly nonstationary, in phase space 

the reconstructed attract or will be stretched along a ray, resulting 

in an underestimation of the true dimension. Grassberger and Pro­

caccia (1983a) noted the same problem in continuous time processes 

sampled at very close intervals. 

Since the Nikkey and Dow Jones stock prices are nonstation­

ary, we perform the analysis on the rates of returns. To address 

the problem of correlated data, Brock (1986) suggested a residual 

diagnostic test. If a series is generated by deterministic chaos then 

the residuals from a linear, or smooth nonlinear transformation of 

the data, should yield the same correlation dimension as the original 

series. Thus, we filter the daily returns with linear AR models. Also, 

we should capture the dependence in the second moments because 

of the excess kurtosis. GARCH models (Bollerslev, 1986) are then 

estimated by maximum likelihood, and the data are filtered again. 

Since we are taking a smooth transformation of the data, the Brock 
residual theorem applies to this series as well'. 

To obtain additional evidence regarding the presence of nonlin­

earities and to further motivate our testing for chaotic structure, 

we perform the test suggested by Brock, Dechert, LeBaron and 
Scheinkman (1996) to the filtered series. As we have seen in the 

early sections, the asymptotic distribution is not appropriate when 

lSased on the ArC (Akaike infonnation criterion), a Student-t GARCH (1,1) was adjusted for 

both the Nikkey and Dow Jones daily returns. 
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applied to the standardized residuals of ARCH models. We have used 

the critical values for the BDS test applied to GARCH standardized 

residuals reported by Brock et al. (1991). 

Tables 3 and 4 report the BDS test statistics for the Nikkey and 

Dow Jones daily returns and their standardized GARCH residuals. 
In computing the BDS statistics, we have two important issues to 

deal with: the choice of m and c. For a given m, c cannot be too 

small because Cm(c) will capture too few points; also c cannot be 

too large because Cm(c) will capture too many points. According 

to Hsieh (1989), we apply the BDS test to these sets of series for 
embedding dimensions of m = 3,4,5 and 10. For each m, c is set to 

0.5, 1.0, 1.5 and 2.0 standard deviations (0") of the data. 

We strongly reject the hypothesis that the Nikkey and Dow Jones 
daily returns are i. i. d. Also, it is clear that the BDS statistics all 

lie in the extreme positive tail of the standard normal distribution 

for the return series. When the BDS test is applied to Dow Jones 

GARCH residuals, none of the BDS statistics are significant when 

compared with the simulated values in Brock et. al (1991). On the 

other hand, we have mixed results with respect to Nikkey GARCH 

residuals, since some BDS statistics are significant at 5%. Thus, in 

principle, the behavior of the Dow Jones index appears to be well ex­

plained by a simple Student t - GARCH (1,1) model. With respect 
to the Nikkey index, the results suggest the presence of an unspeci­

fied omitted structure. These results motivate the investigation of a 

possible chaotic structure in the data. 
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Dimension 
m=3 

m=4 

m=5 

m=lO 

c.la 
0.5 
1.0 
1.5 
2.0 

0.5 
1.0 
1.5 
2.0 
0.5 
1.0 
1.5 

2.0 

0.5 

1.0 

1.5 
2.0 
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Table 3 - BDS Test Results 
Nikkey daily returns GARCH Residuals 

18 .61 *** 1.45 

18.27*** 1.73** 

17.46*** 2.01& 

16.15*** 1.94& 

23.12*** 1.66 

21.05*** 1.85** 

19.46*** 1.95& 

17.69*** 1.70& 

29.61 *** 1.93 
24.34*** 2.13** 

21.30*** 2.22& 

19.05*** 1.92& 
134.72*** 4.38 
51.18*** 2.98** 

30.33*** 2.01& 
23.68*** 1.19& 

Notes: The BDS tests for i.i.d., where m is the embedding dimension and £ is dis­

tance, set in terms of the standard deviation of the data (0") to 0.5, 1.0, 1.5 and 2.0 

standard deviations. The critical values for the BDS test applied to GARCH stan­

dardized residuals in the case of e/0"=0.5 they are approximated by the 2.5% and 

97.5% quantiles reported by Brock et al. (1991) on CAReH (1,1) standardized resid­

uals for 1000 observations; in the case £0'=1.0 they are approximated by the 2.5% 

and 97.5% quantiles reported by Brock et al. (1991) on GAReH (1,1) standardized 

residuals for 2500 observations. & indicates that the corresponding critical values for 

the BDS test statistic are not available and no hypothesis testing has been performed. 

*** indicates significance at the 0.01 level. ** indicates significance at the 0.05 level. 
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Dimension 

m=3 

m=4 

m=5 

m=lO 
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Table 4 - BDS Test Results 
Dow Jones daily returns GARCH Residuals 

E:/IJ 
0.5 8.00*** -0.91 

1.0 9.80*** -0.21& 
1.5 11.90*** 1.07& 
2.0 13.72*** 2.98& 

0.5 9.76*** -0.91 

1.0 11.51 *** -0.26 

1.5 13.15*** 0.91& 
2.0 14.53*** 2.79& 

0.5 12.02*** -0.43 
1.0 13.35*** -0.03 

1.5 14.36*** 0.88& 

2.0 15.19*** 2.50& 

0.5 33.25*** -0.39 
1.0 24.17*** 0.95 

1.5 20.31 *** 1.35& 

2.0 18.47*** 2.48& 
Notes: The BDS tests for i.i.d., where m is the embedding dimension and e is dis­

tance, set in terms of the standard deviation of the data (0-) to 0.5, 1.0, 1.5 and 2.0 

standard deviations. The critical values for the BDS test applied to GARCH stan­

dardized residuals in the case of ejO"=O.5 they are approximated by the 2.5% and 

97.5% quantiles reported by Brock et al. (1991) on GARCH (1,1) standardized resid­

uals for 1000 observations; in the case cu=1.0 they are approximated by the 2.5% 

and 97.5% quantiles reported by Brock et al. (1991) on CAReR (1,1) standardized 

residuals for 2500 ob�ervations. & indicates that the corresponding critical values for 

the BDS test statistic are not available and no hypothesis testing has been performed. 

*** indicates significance at the 0.01 level. ** indicates significance at the 0.05 level. 
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4.1 Correlation Dimension Estimates. 

In this section, we report the correlation dimension over the 

range of embedding dimensions m = 1, 2, . . .  , 15. Scheinkman and 

LeBaron (1989) suggest another diagnostic tool - shuffling the data. 
A shuffling of the original series results in a series without temporal 

dependence. For an i. i. d. process, randomizing will not affect the 

dimension, since the shuffled series will also be i. i. d. For a chaotic 

process of low dimensionality, shuffling will result in no saturation of 

the correlation dimension estimates. In this way, if we observe that 

the actual dimension estimate is less than that of every shuffled se­

ries, we find evidence in support of a nonlinear deterministic process 

underlying the data. Therefore, dimension calculations based on the 

shuffled data are a useful benchmark against which to compare actual 

dimension estimates. Few studies have passed the shuffle diagnostic 

after ARMA and ARCH filtering. Frank and Stengos (1989), and 
Scheinkman and LeBaron (1989) reported dimension estimates, in 
the range of 6 to 7 after filtering, that pass the shuffle diagnostic. 
Mayfield and Mizrach (1992) reported dimension estimates, in the 

range of 2 to 3 after GARCH filtering. 

We use a pseudo-random number generator to create our shuffled 

series, which are constructed by randomly drawing with replacement 

from the associated original series. Tables 5 and 6 report correlation 

dimension estimates for the raw data and filtered series: AR (2) 

residuals and Student-t GARCH standardized residuals2• Clearly, 

the Nikkey and Dow Jones series appear to pass Brock's residual 

test when we use AR residuals. However, for both series the correla-

2The AR (2) model was selected based on the AIC) and fitted to both the Nikkey and Dow 

Jones daily returns. 
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tion dimension estimates for the CARCR residuals are significantly 

different from ones obtained for the daily returns. It should be noted 

that a possible reason for the noticeable increase in the correlation 

dimension estimates for the CARCR residuals is the tremendous 

filtering the Nikkey and Dow Jones are subjected to, given our rela-

tively small sample. 

Table 5 - Correlation dimension Estimates (Dow Jones) 

Dow Jones AR residuals CARCR residuals 
m (a) (b) (a) (b) (a) (b) 

2 0.45 0.57 0.50 0.51 1.29 1.29 

3 0.66 0.86 0.72 0.77 1.95 1.94 

4 0.85 1.15 0.94 1.02 2.61 2.59 

5 1.03 1.44 1.14 1.28 3.25 3.24 

6 1.20 1.74 1.32 1.54 3.90 3.89 

7 1.36 2.04 1.50 1.79 4.54 4.54 

8 1.52 2.34 1.67 2.04 5.18 5.19 

9 1.66 2.64 1.82 2.29 5.81 5.84 

10 1.79 2.93 1.97 2.54 6.43 6.48 

11 1.92 3.22 2.11 2.79 7.05 7.12 

12 2.04 3.52 2.25 3.04 7.66 7.77 

13 2.16 3.80 2.38 3.29 8.26 8.38 

14 2.28 4.08 2.51 3.55 8.83 8.92 

15 2.39 4.34 2.63 3.80 9.45 9.41 
Notes: Colums (a) report estimates for original series and colums (b) report estimates 

for the shuffled series. 
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Table 6 - Correlation dimension Estimates (Nikkey) 
Nikkey AR residuals GARCH residuals 

m (a) (b) (a) (b) (a) (b) 
2 1.01 1.17 1.01 1.16 1.04 1.43 

3 1.43 1.75 1.43 1.73 1.56 2.15 

4 1.82 2.33 1.81 2.30 2.07 2.86 

5 2.17 2.92 2.16 2.88 2.57 3.56 
6 2.49 3.51 2.47 3.46 3.08 4.26 

7 2.78 4.10 2.76 4.04 3.58 4.97 

8 3.03 4.69 3.02 4.62 4.06 5.68 
9 3.28 5.29 3.26 5.19 4.54 6.38 

10 3.50 5.88 3.49 5.75 5.02 7.08 
11 3.71 6.46 3 .69 6.32 5.48 7.76 

12 3.90 7.05 3.89 6.88 5.94 8.48 
13 4.08 7.64 4.07 7.44 6.38 9 .26 
14 4.25 8.28 4.24 8.02 6.80 9.90 
15 4.42 8.85 4.41 8.61 7.22 10.58 
Notes: Colums (a) report estimates for original series and colums (b) report estimates 

for the shuffled series. 

Figures Al and A2 (Appendix) show that the correlation dimen­

sion estimates increase very slowly with embedding dimensions for 

the Dow Jones and Nikkey daily returns, and are well below the 

theoretical values for the shuffled series. If the time series is a real­
ization of a stochastic process, the correlation dimension estimates 

should increase monotonically with the dimensionality of the space 

within which the points are contained. In finite data sets, however, 

stochastic data may yield correlation dimension estimates which are 

substantially lower than the embedding dimension m and which rise 
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slowly with m while chaotic data may not deliver complete satura­

tion. 

Figures A3 and A4 (Appendix) report the correlation dimension 
estimates for GARCH residuals. The shuffie diagnostic applied to the 

Dow Jones GARCH residuals reveals that the GARCH model picks 
up the relevant structure of the data, considering that the shuffied 

series has the same dimension as the original series. This diagnostic 

confirms the results obtained by the BDS test: the BDS test did not 

reject the null hypothesis of an i.i.d. process. On the other hand, 

for the Nikkey index the nonlinear structure is not accounted by the 

GARCH model, since the correlation dimension estimates are well 
below the theoretical values for the shuffled series. 

The correlation dimension estimates jointly with the shuffle di­

agnostic suggest the following: First, the daily series do not pass 

Brock's residual test since the dimension estimates for GARCH resid­

uals are significantly different from those of the original series. How­
ever, it should be stressed that AR residuals show the same dimen­
sion from those of the original series. Second, the shuffie diagnostic 

applied to the Nikkey index suggests that some deterministic nonlin­
ear structure may exist in the series, and is lost by shuffiing. How­

ever, the same method suggests that the GARCH model picks up 

the relevant nonlinear structure of the Dow Jones index. Next, we 
compute the Kolmogorov entropy which measures the mean rate of 

creation of information of the system. 

4.2 Kolmogorov Entropy Estimates. 

In this section, we report the Grassberger and Pro caccia (1983b) 
approximation to the Kolmogorov entropy, denoted as K2. As pre-
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viously indicated, if a time series is completely stochastic, then 
K2 = 00. Recall that the entropy measures the rate at which in­

distinguishable paths become distinguishable when the system is ob­

served with only some finite level of accuracy. The lower the value 

of K2, the more predictable the system. Figures 3 and 4 show the 

plot of [lnCm(c) - InCm+l(c)] against m over the scaling region for 

c (c = 0.920toc' = 0.935). These quantities do not converge to a con­
stant value at relatively low embedding dimensions. The curves are 

decreasing, and as m increases and c decreases these curves do not 

tend to constant values. Note that these estimates are the lower 
bound on the metric entropy and are consistent with the stochas­

tic interpretation of the returns series since the entropy seems to 

diverge. 

Taken the evidence from all diagnostic tools for chaos together, 

nonlinear determinism cannot be supported as a representation of 

the data generating process for the Dow Jones and the Nikkey in­

dices. The results indicate that GARCH processes explain most of 
the nonlinear dependence in the Dow Jones index. With respect to 

the Nikkey, the results suggest some unknown nonlinear stochastic 

structure in the data. 
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Figure 3 - Approximation to Kolmogorv Entropy (Dow Jones) 
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Figure 4 - Approximation to Kolmogorv Entropy (Nikkey) 
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5. Remarks. 

In this paper we examined certain properties of the Dow Jones 

and the Nikkey indices, exploring possible deterministic nonlinear 

structures. Using the detrended fluctuation analysis (DFA) statisti­

cal method, we investigated the information propagation over time in 
these markets. We constructed a local measurement of randomness 

which permitted to identify some extreme events and their impacts 

on the underlying randomness of the systems. Also, it seems that 

each market react in a different way with respect to some common 

events, resulting in a distinct dynamics of the information propaga­

tion measured by the DFA exponent. 

With respect to chaos analysis, our results do not suggest evi­
dence of deterministic nonlinear structures. In fact, the shuffle diag­

nostic for the Dow Jones index showed that GARCH processes can 

account its relevant structure. This diagnostic confirmed the results 
obtained by the BDS statistics. With the methods used in this pa­

per, we cannot determine the nature of the apparent randomness 

exhibited by the Nikkey index. However, the estimated Kolmogorov 

entropy suggested that this market creates information such that the 
entropy of its system diverges, contrary to the chaos hypothesis. 
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Figure Al - Dimension Estimates of Daily Returns (Dow Jones) 
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Figure A2 - Dimension Estimates of Daily Returns (Nikkey) 
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Figure A3 - Dimension Estimates of Standardized CARCR (Dow 
Jones) 
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Figure A4 - Dimension Estimates of Standardized CARCR Residuals 
(Nikkey) 
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