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Resumo

Utilizamos o modelo de simulagio de Chalfant e Gallant (1984) para estudar o
ajuste de uma forma flexivel de Fourier a uma fun¢io de custo. O objetivo é o de
estimar uma elasticidade de substitui¢io. Os dados que utilizamos apresentam erros
nas variaveis exogenas e método de estimagao ¢ o de minimos quadrados multivariados.
Utilizamos no processo de estimagao duas formas flexiveis de Fourier. Uma com 13
parametros (FFF13) e outra com 22 (FFF22). Os vieses nas estimativas pontuais
das clasticidades sdo pequenos para o ajuste com FFF13. As estatisticas ¢ classicas
nio seguem. em geral, a distribui¢io de Student. Mesmo quando as estimativas sdo
propriamente centradas e escalonadas existem casos onde a aproximagao normal nao

se verifica.

Abstract

We use the simulation model of Chalfant and Gallant (1985) to investigate the fit
of a Fourier flexible form to a cost function when interest is to estimate elasticities of
substitution. 'The datais subject to errors in variables and the estimation method is

seemingly unrelated regressions. We use two approximating Fourier functional forms
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with 13 (FFF13) and 22 (FFF22) parameters. The biases in point estimation are
negligible for FFF13. The classical ¢ statistics do not follow, in general, the Student’s
distribution. Even when estimates are properly centered and scaled there are cases

where the normal approximation does not hold.

Palavras-Chave: [Flexible forms, faclor demand systems, translog cost function,

FFourter flexible form, estimation of elasticities
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1. Introduction.

The classical use of a flexible functional form in econometrics
to fit an indirect utility function in consumer theory, or a cost
function in the theory of the firm, usually involves the specifica-
tion of a model in a parametric family. For the theory of the
firm one can achieve this purpose specifying the cost function as
C(p,y) = f(ao+p'w+(1/2)w'Tw,v) where the function f is known,
w 1s a vector of monotonically transformed prices p, and v is a func-
tion of output y that may depend on prices. The constant «g, the
vector 3, the matrix I, as well as any other unknown constants ap-
pearing in the function v, are parameters. A variant for consumer
demand obtains dropping v and letting p be a vector of income nor-
malized prices. Typical examples are provided by the generalized
Box-Cox family (Berndt and IChaled (1979)) of which the class of
Translog cost (indirect utility) functions is a limiting case. The ob-
jective of the econometric exercise of fitting an expenditure system
is, usually, to estimate elasticities. One can completely specify these
quantities with knowledge of the cost (indirect utility) function and
its first and second order derivatives. From a statistical point of view
the estimation of elasticities simplifies if the response model is taken
from a parametric family and if the corresponding expenditure sys-
tem 1s linear. This is the case of the theory of the firmm with the use
of the Translog.
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A parametric family of cost (indirect utility) functions is said to
be flexible if it endows the estimation procedure with nonparametric
properties, that is, if we have a reasonably close approximation to
target population quantities (strong consistency, for example) even
if the true response function is not a member of the family for any
parameter choice. Relatively recent studies indicate that none of
the classical parametric families can achieve flexibility in this sense.
See White (1980), Guilkey, Lovell and Sickles (1983), Gallant (1981,
1982), and El Badawi, Gallant and Souza (1983). The reason for the
lack of flexibility seems to be the failure of a Taylor series expan-
sion to provide a uniform approximation simultaneously to a true
response function and its first and second derivatives. In this con-
text Gallant (1981) introduces the Fourier flexible form for indirect
utility functions. The version for cost functions appeared in Gallant
(1982). Essentially the Fourier flexible form superimposes a trigono-
metric polynomial to a Translog specification. The inclusion of sine
and cosine terms endows the Translog family with the properties of
Fourier series expansions. It is well known that a Fourier series can
approximate a function in a Sobolev sense, that is, in a metric that
allows a uniform approximation simultaneously for a function and its
derivatives. If the observational model used to approximate the fac-
tor (consumer) demand system has additive and independent errors
one can prove strong consistency of estimators of elasticities, con-
ditionally on a realization of prices and other covariates, for any of
the standard statistical procedures. For this result to hold it is nec-
essary to introduce a dependence of the order of the approximating
Fourier series on the sample size. The question of asymptotic normal-
ity in a context where the number of parameters grow with sample
size 1s more delicate. Only recently this problem has been prop-
erly addressed and solved under very special circumstances. These
circumstances hypothesize factor demand systems and multivariate
least squares (seemingly unrelated regressions) with a known vari-
ance matrix. Sufficient conditions for asymptotic normality require
the growth of the number of parameters at a rate slower than any
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power of the sample size. See Gallant and Souza (1991) and also
Andrews (1994) for a flavor of the regularity conditions that may
be involved in general and for a strategy to prove consistency and
asymptotic normality in semiparametric models.

It has been argued in the econometric literature that actual fac-
tor demand systems do not show additive errors. The problem of
errors in variables is intrinsic to such systems. Any realistic applica-
tion of seemingly unrelated techniques will face this condition which
have not been contemplated yet in theoretical studies. In this con-
text Chalfant and Gallant (1985) use a reoriented central composite
design and Monte Carlo simulation to investigate the performance
of the Fourier flexible cost function. They restrict their attention to
the study of statistical biases in the estimation of elasticities of sub-
stitution. Two variables define the factor space in their experiment:
a measure of elasticity intensity ¢ and a technology A chosen in the
homothetic Box-Cox family (see also Box and Cox, 1964). They fit
a quadratic form in ¢ and A to the response surface of biases gener-
ated by elasticities of substitution estimated via seemingly unrelated
regressions. Here we extend Chalfant and Gallant’s study. We inves-
tigate the distributions of the estimates and deepen the discussion
on statistical biases. Our objective, basing conclusions on Monte
Carlo evidence, is to provide specific recommendations and warnings
in regard to the practical use of the Fourier flexible cost function.
We organize our presentation as follows. In Section 2 we introduce
the family of cost functions we use later. These are the general Box-
Cox form and the Fourier flexible form. In Section 3 we describe
in detail the experiment of Chalfant and Gallant (1985). In Section
4 we present our simulation results. We base our analysis on the
absolute biases observed in estimates of substitution elasticities and
in two measures of goodness of fit: the chi-square test statistic and
the Shapiro-Wilk test statistic. Finally we summarize our findings
in Section 5.
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2. Cost Functions.

Consider a production scheme involving n factor inputs. Let
p' = (p1, -, pn) be a vector of input prices and let ¢’ = (g1, +,qn)
be the vector of input quantities. The total expenditure resulting
from the choice of quantity vector ¢ is p'q. Let y = f(q1, -+, ¢n) be
the production function. The producer’s problem, given a vector of
factor input prices p and a level of output y, 1s to minimize total
expenditure p’q subject to f(q;,--+,¢,) = y. The minimum expen-
diture C(p, y) corresponding to the solution ¢(p,y) is the producer’s
cost. function. The vector ¢(p,y) defines the set of factor demand
functions.

The theory of the firm may impose regularity conditions on
C(p,y). A minimal set of regularity conditions will impose linear ho-
mogeneity in prices, monotonicity in prices and output, and concav-
ity in prices. A cost function C(p,y) is said to be linear homogeneous
if C(rp,y) = 7C(p,y) for any r > 0, monotonic if V, ,C(p,y) > 0,
.and concave if V?,C(p, y) is negative semidefinite. Concavity and lin-
ear homogeneity imply that V2C(p,y) has rank at most n — 1 with
the price vector p being an eigenvector of root zero. A simplifying as-
sumption on functional form imposes homotheticity (a general form
of constant returns to scale), that is C(p,y) = h(p)d(p) where h(p)
is linear homogeneous.

A linear homogeneous technology (cost function) will satisfy
Shephard’s lemma, that is ¢(p,y) = V,C(p,y) or, equivalently,
S; = 9C(p,y)/0p;/C(p,y), where S; is the cost share of the ith
input factor. Typically the econometricians that deal with expendi-
ture systems will specify a parametric form for C(p,y) and postulate
an observational multivariate (possibly nonlinear) statistical model
s; =0C(p.y)/0p;/C(p,y) +¢cis it =1---n—1. In this latter expres-
sion s; represents an observed share, p are observed prices, and one
share equation has been removed to avoid a singular model.

In some instances is more convenient to express the cost function,
prices, and output in log (base e) form. If g(/,v) represents the
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log cost function, ! = In p, and v = In ¥, the observational model
becomes s; = dg(l, v)/0l; + €;.

The most common statistical technique used in an attempt to
determine C(p,y) or g(l,v) statistically is seemingly unrelated re-
gressions. This estimation technique proceeds as follows. For ob-
servation t = 1---T let s} = (311,"',3(11—1)1) be the vector of
shares and z} = (l},v;). We can write s; = ¢(2,6) + £, where
€, i1s an n — 1 dimensional error vector and 6 is a parameter de-
rived from a completely specified cost function. Let S(6,V) =

S (50— ¢(2,0)) V™ (s, — ¢(2,,6)) and let ¥(F) = 0 be a set
of restrictions on 6. The seemingly unrelated regressions estimate of
6 obtains first finding 6 that minimizes S(6, I) subject to ¥(8) = 0,
putting V = (1/7) Zz‘zl(st — é(2¢,0)) (s, — (24, 0)) and then min-

imizing S(6, V) subject to ¥(#) = 0. Iteration of this process, upon
convergence, yields maximum likelihood estimates under normal er-
rors. See Gallant (1987).

As Gallant (1982) points out the main objective of the econo-
metric attempt to fit share equations focus on the assessment of
elasticities of substitution

o 320(17&)) <0C(p,y) oC(p,y)\ . .
Oij = <C(pay) aplap7 / api ap7 ) y L] = ]-a e,

and price elasticities 7;; = S;joi;. Let ¥ = (0;;). The assumption
of concavity in prices for C(p,y) is equivalent to & being negative
semidefinite. Linear homogeneity implies that the share vector S
must be an eigenvector of root zero for .

2.1. The Box-Cox Cost Function.

Berndt and Khaled (1979) present in detail the generalized Box-
Cox parametric family of cost functions. We concern ourselves here
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only with homothetic technologies. Imposing this condition and lin-
ear homogeneity in prices the generalized Box-Cox family reduces
to

1/A

Ca(p,y) (7//\)22 virtPp | ey

The matrix I' = (7;;) is symmetric and A > 0. For these cost func-
tions the elasticities of substitution do not depend on output. Since
our primary interest is only in the estimation of elasticities of sub-
stitution we assume output to be unit and drop the term ¢(y).

Familiar technologies in the Box-Cox family are the Square Root
Quadratic (A = 2) and the Generalized Leontief (A = 1). The
Translog obtains taking the limit as A — 0. The Translog cost
function (in log form) is

g(l,'U) = Qo + alz +

N

T 9
I'T+ (B + fo) vt g 22

=1

where we must impose Y;o; = 0 and E;v;; = 0 for linear ho-
mogeneity in prices. The terms in v disappear when output
1s unity.

If A > 0 the expressions for shares and elasticities of substitution
are

Si= {2013 " 5ip)? | 10CM D)), i=1n (1)

j=1
A A
a;i=1—,\+~m%_2—0ﬂ(p,y) 55 T 5 i=1,---,n (2
px/) A/2
7= 1= h ok M O ), 3)
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and for A= 0
Si»‘—'OZ{‘!‘Z')’ijlj, i’__—]').”)n (4)
J=1
i1 :
in:l-*_jy_lg‘m_‘: T':l:"':n (5)
o =1+ oL i4j (6)
7 515] .
Using the normalization rule Cx(p) = 1, given values for A, o;j,

pi, and S;, one can solve Equations (1)-(6) to find a unique set of
7vij. Later we use this fact to derive population technologies. In
this exercise the specification of the substitution matrix ¥ will imply
values for S;. Notice that with knowledge of v;; we can use Equations
(1) and (4) to generate share data.

2.2. The Fourier Flexible Form.

Gallant (1982) introduces the Fourier flexible form for the anal-
ysis of factor demand systems as follows. As before let 2’ = (I',v)
where now [; =ln p; +Ina¢; and v =ln y + In a,+1. The constants
aj,- -, any; are location quantities chosen such that r becomes a
vector with all coordinates strictly positive. For the prices compo-
nents one may take In ¢; = —min; In p; + ¢ for any choice of ( > 0.
The functional form of the Fourier flexible form with I\ parameters
1s

A J
1 ‘
gh.(.’l:.,g) = ug + b =+ 5 2'Bzx + Z Uga + Z [“’jo COS(]T}C:}.’E)—
Z - ]

=1
— Vja Sin(ka:_,:L')]}
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with

B = '—T2 i ank‘akla.

a=]1

Here uo, voa, b, B, uja, and vj, are parameters, ko is a vector with
integer components - a multi-index, and 7 is a scale parameter chosen
to make each z a point of (0,27)**1. The vector # represents the
collection of parameters written down in some order. In this paper
we use ¢ = 107°% and 7 = 6/ max; ;. Since output is taken to be
unit, in our instance the vector z is equal to [.

A deep philosophical difference between the Fourier flexible form
and other parametric cost functions lies in the dependence of I
on the sample size T. We emphasize this dependence here writing
I = K. The Fourier flexible form g (z,6) approximates a true
cost function in the Sobolev sense if N'p — oo as T' — oo. This
result poses some problems in applications. It is not clear in the
literature of the subject how one should optimally choose ' and
therefore A, J, and the multi-indices &,.

The Fourier flexible form will approximate a linear homogeneous
cost function if we impose ¥;b; = 1 and keep only terms correspond-
ing to multi-indices k4 for which E;k4,; = 0.

The Fourier flexible form expenditure system is linear since
shares can be expressed as S; = gy, (z,0)/0z; = ¢i6. Since also
0?95 (2,0)/0z;0z; = h;6 we can compute elasticities of substitu-
tion as
h’iig 1 h’ijg

gii(g) = -+ — —— and O'ij(a) =] + m

(067 " g8 L7

)

It follows that if an estimator 6 is available, via seemingly unre-
lated regressions for example, we can estimate consistently the true
elasticity of substitution o;; by o;;(#) and try to approximate its

variance by V’aij(é)QVUij(é) where ) is an estimate of the vari-

ance matrix of . One can compute price elasticities estimators in
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an analogous manner. See Gallant (1982) and El Badawi, Gallant
and Souza (1983) for more details on this approach.

In our simulation study we use, as in Chalfant and Gallant
(1985), two Fourier flexible forms: one for which K7 = 13(FF F13)
and another for which Ky = 22(FFF22). In both cases the true
technology is a function of a price vector of dimension three. For
FFF22 we take A = 6 and J = 1. The choices of multi-indices ar
Ko=(01—-1), k, =(1-10),k =(10-1), k¥ =(1-21),
ki = (11-2), and ky = (2 -1 —1). The first three have norm
two and the last three norm four. The norm of a multi-index is the
sum of the absolute values of its components. The resulting (FFF22)
form 1s

ga2(z,0) = ug +b'z + -;— 2'Bx

+ ugr + 2 {u; cos[r(z2 — 23)] — vy sin[r(z2 — 23)]}
+ upg + 2 {ug coslr(a; — 22)] — vesin[r(z; — 23)]}
+ uwog + 2 {ug cos[r(z1 — 23)] — vasin[r(z, — z3)]}
+ ugq + 2 {ug coslr(z1 — 229 + 23)] — vy sinfr(z) — 22, + 23)]}
+ ugs + 2 {us cos[r(x1 + 22 — 2z3)} — vs sinjr(z; + 22 — 223)}}
+ ugg + 2 {ug cos[T(2z) — vy — z3)} — ve sn{T(2z) — 29 — 23)]}
The parametrization above for FFF22 leads to a singular design

matrix. To avold this we reparametrize the elements of B and absorb

the terms ug, in the constant term. On B we impose symmetry and
homogeneity.

The version FFF13 obtain from FFF22 reducing the order of the
trigonometric polynomial. Here we consider only multi-indices with
norm two. This is equivalent to set the coefficients ugq, ugs, Ugg, U4,
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v4, Us, Vs, Ug, and vg to zero in the expression for FFF22. Also

—Ug2 — Uo3 ugp?2 Ug3
2
B=-—-71 uo2 —ug1 — Up2 Ug
Uo3y Up1 —Upl — Uo3

and the parametrization is identifiable.

3. Experimental Design.

Basing their claims on the empirical evidence of past work Chal-
fant and Gallant (1985) argue that the presence of bias, and its
relative size, in the statistical estimation of elasticities, may depend
on the nature of the true technology, on the particular pattern of the
elasticity matrix, and on the magnitude of each elasticity being es-
timated. In this context they design a response surface experiment
depending on two quantitative factors: Technology - measured by
variate A, and Elasticity - measured by variate . The design space
is the rectangle [0,2] x [0,2]. Each choice of (o,A) defines a tech-
nology Cx(p;,p2,p3) in the homothetic Box-Cox family for which
the matrix of elasticities of substitution is £(o). They use a total
of nine design points chosen as explained below. The idea is to fit
the Fourier flexible form to data generated according to each of these
“true” technologies and investigate the nature of the response surface
defined by the absolute biases resulting from the estimation process.
Of particular concern is the presence of a ridge of increasing bias in
any particular direction (o A). They compute X(¢) as follows. The
own price elasticities are taken to be equal to —7) for all three prices.
The diagonal elements of (o) are then o;; = —5/S;. The off diago-
nal elements have the same magnitude ¢ and ¥ has one of the three
patterns

g11 g ag 011 (o} —0
I: o g2 —0O II: o 099 O
ag —0 033 —0 ag g33
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J11 —a a
IIr: —ad  T22 o
(22 22 033

The actual pattern used for each combination (o A\) was chosen ran-
domly.

Given a value of ¢ # 0, £ is completely determined by the
placement of the negative sign. We illustrate this construction when

— % O’n a
Y= e —ﬂa.
o -0 -3

It follows (from £S; =1 and £S5 = 0 that

—n +05+0S5,+053=0
-n +05+05 +-053=0
‘—77 + 051 +-0S52+-05 =0
,—077+ 51+ 52+ 53=1

The solution for this system is S; = 3/5, S = S3 = 1/5 and 5 =
20 /5. Thus for Pattern I

L (-2 3 3
Se)=3 | 3 -6 -3
3 -3 -6

For Patterns II and III we obtain, respectively,

o -6 3 =3 o -6 -3 3
Y(o) = 3 3 -2 3 and Z(o) = 3 -3 -6 3
3 3 —¢ 3 3 —2
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Notice that these three matrices are negative definite with rank two.
At this point it is important to remark that when ¢ = 0 a random
choice among Patterns I, II, and III was used to decide which share
should have value 3/5.

The design points in the factor space where chosen as follows.
Consider first the central composite rotatable design in Cochran
and Cox (1957). This is a design commonly used in experimen-
tal statistics to approximate a response function by a quadratic
form. The nine vectors (0 — v/2), (00), (11), (0v/2), (=11),
(=1 = 1), (1 = 1), (v/20), and (—=v20) define the design. The

transformation (5—'1'/-7‘/5, y“i“/\i/z_) maps the central composite into the

square [0,2] x [0, 2] producing the new design points (o,\) : (10),
(11), (1.707111.70711), (12), (0.292891.70711), (0.292890.29289),
(1.707110.29289), (21), and (01). This is the layout we will use.
We refer to these points as design points 1 — 9 respectively. Known
technologies in the layout are the Translog - Design 1, Leontief - De-
sign 9, Square Root Quadratic - Design 4, and Generalized Leontief
- Design 2 and 8.

It is clear from Equations (1)-(6) of Section 2 and from the
normalization rule Cy(p) = 1 at p = pp that a design point (o, )
uniquely determines Cy(p) with the choice & = (o).

Chalfant and Gallant (1985) consider two price series to generate
data in the Monte Carlo process. The idea is to mimic the behavior
of expected and actual prices so that share data is simulated with ex-
pected prices and fit to actual prices. A typical case of errors in vari-
ables and non additive regression errors. The series of actual prices
py is fixed and is generated according to the model Inp; = 8 + uy,

us = Ru,_; + ¢, where ' = (0.09760778 — 0.00721513 0.37562201),

0.56627 0.055096 —0.017574
R= 0.13356 0.502859  0.129266
—0.14791 0.110825 0.934661

and €, is a three dimensional multivariate normal random vector
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with mean zero and variance V = F'F. Here

—0.00135824 —0.08386093 —0.00054760
F= 0.00067686  0.00017299 —0.02817099
—0.01265727  0.00206979 —0.00030284

For py we take exp(f). This is the price vector used to obtain the
population technologies in Table 1. The (vector) stochastic process
above was adapted by Chalfant and Gallant (1985) from a real price
series studied in Berndt and Wood (1975).

Following Huber (1981) K7 =~ T2/3. In this context a basic
sample of 25 observed prices is generated to fit FFF13 and extended
to 48 to fit FFEF22: With only two shares retained the number of
effective observations in each case becomes 50 and 96 respectively.

The series of expected prices p; is a function of observed prices p;.
We take In (p;) = In(p;) + {; where (, = B+y;. Here y; is a multivari-
ate normal random vector with mean zero and variance matrix al.
Shares are generated using the formula s;; = OCx(5;)/Opi/CA(P:)
which is Shephard’s lemma. Chalfant and Gallant (1985) genrate
5000 replications and set « to 0.1. This choice of «, in their case,
allows estimation of elasticities with accuracy of three digits when
the true technology is the Translog. Here we take 1000 Monte Carlo
replications. We achieve the same accuracy for the Translog case
with @ = 0.01 for both fits (FFF13 and FFF22). The number of
replications we choose is in accordance with the bootstrap litera-
ture, see Efron (1990) and Efron and Tibshirani (1993), and keeps

the simulation process at a PC manageable size.

4. Simulation Results.

Our simulation study mimics the basic structure (model) of
Chalfant and Gallant (1985). We use SAS - ETS to compute seem-
ingly unrelated regressions, SAS - PROC IML to compute standard
errors of elasticities of substitution and nonparametric density es-
timates, and SAS - STAT to evaluate empirical distributions. In
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Subsection 4.1 we present our findings in regard to biases in estima-
tion. In Subsection 4.2 we show our results regarding the adequacy
of large sample distribution approximations.

4.1. Biases in Estimation.

The variable of concern here is the absolute bias |o;; — ;| where
oi; 1s the true elasticity of substitution and &;; is an average of 1000
seemingly unrelated estimates ;.

Table 2 shows the evolution of two summary statistics computed
from the basic results reported in Félix Souza (1993). Those are the
average absolute bias per technology (A) and the average absolute
bias relative to the Translog which functions as a base case or con-
trol. The overall impression is that FFF13 has a better performance
than FFF22. The worst case for FFF13 is technology five which on
average shows a bias close to 0.03. This is about eight times the bias
we measure when we use FFF13 and the data is generated accord-
ing to the Translog. The fit for FFF22 produces four bad estimates
of elasticities. Two of those seem to be definite outliers: technolo-
gies four and eight. The average absolute biases are 0.08 and 0.14
respectively. These figures are approximately 45 and 77 times the
average bias we measure when we fit FFF22 to data generated from
the Translog. Chalfant (1983) also reports an increase in bias when
using the FFF22 but our results are more dramatic. He attributes
the misfit to errors in variables. In our case other sources of insta-
bility may also be confounded in the process. Potential candidates
are specification bias and multicollinearity. We dit not notice any
significant effect due to the difference in patterns present in 3.

The response surface analysis for the absolute bias is shown in
Tables 3 and 4. Model FFF13 passes the lack of fit test and the
stationary point is a saddle point outside the region under study.
This is an indication of good performance. Model FFF22 does not
pass the lack of fit test but a ridge of increase in response is observed
in the direction of (¢ = 1.956 A = 1.292) which is close to Design 8.
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These results are in close agreement with the findings of Table 2.

4.2. Probability Distributions.

To identify directions of poor large sample approximations (via
response surface analysis) in the technology factor space we compute
two measures of goodness of fit. A measure we call X?, which is
the chi-square test statistic, and the Shapiro-Wilk test statistic W.
For model FFF13 the variable X2 measures the overall discrepancy
from the fit of a ¢ distribution with 39 df to observed ratios of the
form t;; = (6 — 0ij)/s(8i;) where s(5;;) is the seemingly unrelated
regressions estimate of the standard error of &;;. For FFF22 variable
X? measures a similar quantity for the ¢ distribution with 79 df. We
consider in both cases 14 non overlapping classes. The boundaries of
these classes are set in such way to produce the same probabilities
under t3g and t7g9 respectively. The Shapiro-Wilk test statistic W
measures departure from normality when we consider the variate
Gij.

The empirical probabilities associated with ¢;; in many cases
differ markedly from tables of the ¢ distribution. On the other hand
the behavior of &;; is close to normality. Figures 1 and 2 illustrate
these facts showing density estimates for some elasticities in Design
8. With a few exceptions the pattern is typical of other designs.
The visual impression is confirmed by X2 and W. Overall the better
approximations are for FFF13.

We show the response surface analysis for In X2 and W in Tables
5,6, 7and 8. In the case of In X? FFF13 passes thelack of fit test and
the stationary point with coordinates (o = 1.288618 A = 0.9456335)
is a maximum. This is close to the Generalized Leontief (Design 2).
The model FFF22 does not pass the lack of fit test. The variable
W shows opposite results. FFF13 does not pass the lack of fit and
FFF22 does. In this instance the stationary point is a minimum
and has coordinates (¢ = 0.9812826 A = 0.871032). As with In X2

we see that the direction of worst results is close to the Generalized
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Leontief. For both response variables, whenever the lack of fit test
fails, we notice a ridge in the direction of this same technology.

As a final comment 1n regard to the statistics ¢;; we point out
our impression that the bias in the estimation of both, ¢;; and s(&i;),
rather than the polynomial rate of dependence to the sample size,
may the cause for the poor ¢ distribution approximations.

5. Conclusion.

The Fourier flexible form seems to perform very well for Ny =
13, particularly in regard to point estimation of elasticities. The
inclusion of additional trigonometric terms seems to lead to unsta-
ble estimates. The classical Wald test statistics based on seemingly
unrelated estimates do not follow a #-distribution. The better distri-
bution results obtained with the Shapiro-Wilk test statistic, which
properly centers and scales the estimates &;;, is an indication that
the use of bootstrap techniques to correct for bias and to set confi-
dence intervals will provide a more reliable statistical inference than
the classical delta method. In general our analysis indicate that dis-
tribution results are particularly bad in the direction of Generalized
Leontief cost functions. The discrepancies observed are too large to
be attributed to errors in variable alone.

Submetido em Abril de 1995. Revisado em Agosto de 1995.
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t,5-fFf13

ty,-1ff22

Figure 1: Nonparametric density estimates for the distribution of
t;; for design 8. Normal kernel. The dashed curve is the standard
normal
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3

G 13-fff13

G 1)-fff22

Figure 2: Nonparametric density estimates for the distribution of
6ij for design 8. Normal kernel. The dashed curved is the normal
density with mean and
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Table 1

Population Technologies. For the Translog ao = 0.756928,
;= 0.191614, oy = 0.208386, and a3 = 0.6

Design | Pattern | T11 712 713 Y22 Y23 V33
1 11 0.0800 | -0.0800 | O 0.0800 0 0
2 1 0.1088 | 0.2294 | 0.1894 | 0.04003 | -0.0665 | 0.0275
3 I 0.0667 | 0.3142 | 0.2266 | -0.0937 | -0.0342 | -0.0487
4 11 -0.0329 | O 0.1495 | -0.0406 0.1660 | 0.0566
5 I 0.2699 | 0.1302 | 0.0939 0.0405 0.0142 | 0.0211
6 I1l 0.7896 | -0.2696 | -0.3167 0.8143 | -0.3216 | 1.1456
7 I -1.0095 | 0.8086 | 0.7645 0.0401 | -0.6248 | 0.0358
8 11 -0.1088 | 0.4588 | -0.1263 | -0.3626 0.3992 | -0.0824
9 I1 0.1814 | 0 0 0.6043 0 0.1374

Table 2

Average Absolute and Relalive Biases for the Fourier Flezible Form

52

Absolute Absolute | Relative | Relative
Design Bias Bias Bias Bias

FIT13 I'T'F22 FFF13 FFF22

1 0.00369950 | 0.0018189 1.0000 1.0000
2 0.01527360 | 0.0232128 4.1286 | 12.7620
3 0.00083742 | 0.0299361 2.2636 | 16.4584
4 0.00730160 | 0.0820313 1.9737 | 45.0994
5 0.02919300 | 0.0181192 7.8911 9.9616
6 0.00802730 | 0.0098951 2.1698 5.4402
7 0.00787500 | 0.0038115 2.1287 2.0955
8 0.01153290 | 0.1398890 3.1174 | 76.9086
9 0.00936490 | 0.0304001 2.5314 | 16.7135
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Table 3
Response Surfore Analysis - FFF13. Numbers in (-) are standard errors.
Model is |Bias| = ag + a1A + a20 + a3x + agAo + as02- R2 = 0.1364

[ Source df Swmn of Squares { Mecan Square I’ Ratio I Pr > F
Lack of Tit 3 0.000988 0.000329 1.539 0.2175
Pure Error 45 0.009634 0.000214
Total Error 48 0.010622 0.000221
ag my o a3 a4 as
-0.005830 0.029217 0.011425 -0.007077 -0.010333 | -0.002128
(0.010519) | (0.015778) (0.015778) (0.007121) (0.006073) | (0.007121)

Table 4

Response Surface Analysis - FFF22. Nwinbers in (-) are standard errers.
Model is |Bias| = ap + a1\ + a20 + (:.3,\'3 + agra +asc? - R% =0.2354

Source df E Sum of Squares | Mean Square | F Ratio Pr>TF |
Lack of Fit 3 0.049123 0.016374 6.731 0.0008
Pure Error 45 0.109463 0.002433
Total Error 48 0.158586 0.003304
g a) a9 a3 (g as

0.010201 0.027847 -0.056332 -0.005336 0.008950 0.037884
(0.040644) | (0.060966) (0.06096G} (0.027516) (0.023466) | (0.027516)

children father mother distribution munber response responsability correspondeuce con-

struction

Table

]

5

Response Surface Analysis - FFF13. Nwinbers in (-) are standard errors.
Medel is i X2 = ag + a1\ + ago + asA2 + aqro +as0 - R2 = 0.2163

Source df Sum of Squares | Meau Square | I Ratio Pr>F
Lack of I'it 3 8.871097 2.957032 1.712 0.1781
Pure Error 49 77.738425 1.727521
Total Error 48 86.609522 1.804365
ap 3 no ag a4 ag

1.760963 1.739899 3.705639 -0.836075 -0.123121 | -1.392659
(0.949826) | (1.424743) (1.424743) (0.643038) (0.548381) | (0.643038)
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ap + a1\ + ago + asA? + asha +aso - B2 = 0.3481

Source df Sum of Squares | Mean Sqgnare F Ratio Pr>F
Lack of Fit 3 37.166524 12.388841 11.090 0.0000
Pure Error 45 50.271704 1.117149
Total Error 48 87.438228 1.821630
aQ a) a9 ag (4 as5

1.915438 0.850512 4.156474 -0.248192 0.129934 | -1.636403
(0.954359) | (1.431543) (1.431543) (0.646107) (0.550999) | (0.646107)
Table 7

Response Surfare Analysis
Model is W = ag + a1\ + a20 + a3A® + agho + ns,ar2 - R2%=0.2368

Sowrce dfl Swum ol Squares | Mean Square I Ratio Pr>F
Lack of Fit 3 0.006684 0.002228 3.993 0.0132
Pure Error 45 0.025108 0.000558
Total Error 48 0.031793 0.000662
ag ay a9 a3 a4 ag

1.003676 -0.039486 -0.082646 0.025174 -0.000274 0.039628
(0.018198) | (0.027297) (0.027297) (0.012320) (0.010507) | (0.012320)
Table 8
Response Surface Analysis - FFF22. Numbers in (-) are standard errors.
Model is W = ag + a)\ + ago + azA? + agho + aso” - R% = 0.3089
[ Sowrce dr Sum of Sguarves | Mean Square j I Ratio i P
Lack of Fit 3 0.000740 0.000247 1.859 0.1502
Pure Error 45 0.005969 0.000133
Total Error 48 0.006709 0.000140
nQ ay ag ag a4 as
0.999465 -0.025555 -0.048292 0.014612 0.000101 0.024548
(0.008360) | (0.012539) (0.012539) (0.005659) (0.004826) | (0.005659)
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