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This paper examines whether consumption responds symmetrically or asymmetrically to 
predictable income. To accomplish such task, we propose an adjustment in Shea (1995a) 
testing equation that make straightforward to test whether consumption is more sensible to 
predictable income increases than decreases. Furthermore, our approach allows us to em-

ploy usual instrumental variable estimators and econometric tools developed to deal with 
the weak instruments problem. Our new approach yields the following results: i) there is 
over-whelming evidence that instruments are weak; ii) the point estimates for negative 
income growth are higher than those for positive income growth; iii) hypothesis testings 
indicate the same findings; iv) confidence sets robust to weak instruments show support for 
previous point estimates and hypothesis tests results. Therefore, instead of finding e vidence 
for myopia or liquidity constraints, the findings support the “perverse asymmetry” 
hypothesis raised by Shea (1995a).
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1. INTRODUCTION

In a seminal paper Hall (1978) solves the consumer intertemporal problem and concludes that 
consumption revisions are unpredictable. More specifically, assuming a quadratic instantaneous 
utility and a constant interest rate, Hall (1978) reaches the random walk hypothesis: Ct+1 =Ct + 
ξt+1, where Ct is the consumption in period t and ξt+1 is an innovation regarding the information 
set from period t , It . Therefore, in accordance with lifecycle-permanent income hypothesis 
(LCH-PIH), predictable movements in income should not affect the consumption revisions. 
This prediction remains valid even when relaxing certain hypotheses made by Hall (1978). 
For instance, Hansen and Singleton (1983) and Hall (1988) adopt the more appealing CRRA 
instantaneous utility and allow the consumer to invest in assets whose returns are time-varying, 
concluding that consumption growth rate depends only on the expected returns on assets.

Despite this flexibility to adjust the framework of the consumer’s intertemporal problem, the 
failure of the LCH-PIH in aggregate data is well established because anticipated income is able 
to predict the consumption growth rate (Campbell and Mankiw (1989; 1990)).1 According to 
Shea (1995a), two common explanations for such a failure is the myopia and liquidity restric-
tions hypotheses. Myopic behavior implies that consumers track current income and, for this 
reason, consumption should respond equally to predictable income increases and decreases. In 
turn, liquidity constraints prevent consumers from taking out loans when income is temporarily
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low, but they can smooth consumption by using savings from previous periods. In this perspec-
tive, liquidity constraints would lead to an asymmetric pattern: consumption should be more
strongly correlated with predictable income increases than declines (Altonji and Siow (1987);
Shea (1995a)).

Shea (1995a) put forward a simple testing equation that examines whether consumption re-
spond symmetrically or asymmetrically to predictable income, which allows the comparison of
myopia and liquidity constraints hypotheses. After estimation, Shea (1995a) tests if the coeffi-
cient of the predictable income increases is equal or different to the coefficient of the predictable
income decreases. We propose a simple adjustment in Shea (1995a) testing equation that make
straightforward to test if the coefficient of the predictable income increases is equal or greater
than the coefficient of the predictable income decreases. Furthermore, instead of predicting the
income growth rate and after splitting the positive or negative growth periods, we predict di-
rectly income increases and income decreases. As a byproduct, this new strategy allow us to
employ usual instrumental variable estimators as well as econometric tools developed to deal
with weak instruments problem.2 In particular, we present valid (robust) confidence intervals
for the coefficients of income increases and income decreases.

We examine the Brazilian case using quarterly data from 1996 to 2019. This is an inter-
est case given the evidence that consumption reacts intensively to predictable income (see,
for instance, Vaidyanathan (1993); Evans and Karras (1996)). To the best of our knowledge,
only Gomes (2010) and Gomes and Paz (2010) had employed the Shea (1995a) approach to
the Brazilian case. Their point estimates suggest that consumption growth rate respond more
strongly to predictable income increases than declines; however, the F − test does not reject
the symmetric null hypothesis. It is worth mentioning that Gomes (2010) and Gomes and Paz
(2010) follow the empirical strategy of Shea (1995a), which means that they do not employ
econometric techniques that are robust to the weak instruments problem.

Finally, our new approach yields the following results: i) there is overwhelming evidence that
instruments are weak; ii) the point estimates for negative income growth are higher than the es-
timates for positive income growth; iii) the hypothesis testing indicate the same findings; iv)
confidence sets robust to weak instruments show support for previous point estimates and hy-
pothesis tests results. Therefore, instead of finding evidence for myopia or liquidity constraints,
the findings support the “perverse asymmetry” hypothesis raised by Shea (1995a).

The rest of the paper is organized as follows. Section 2 discuss the consumer behavior, re-
viewing the LCH-PIH, the myopia and the liquidity constraints hypotheses. Section 3 presents
previous works regarding the Brazilian case. Section 4 presents our new approach for compar-
ison of the myopia and the liquidity constraints hypotheses. Section 5 presents and discuss the
empirical results. Finally, Section 6 concludes.

2. CONSUMER BEHAVIOR

Consider a economy lived by consumers whose preferences are represented by the CRRA
instantaneous utility, given by:

u(Ct) =

{
C1−γ

t
1−γ , if γ > 0 and γ �= 1

lnCt , if γ = 1
(1)

2Neely et al. (2001) and Campbell (2003) note that weak instruments are a problem in estimating consumption

models because asset returns are difficult to predict. In our case, it is necessary to predict income increases and

decreases, which is also not a simple task.
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where γ is the relative risk aversion coefficient. These consumers maximize the expected life-
time utility, given by Et ∑∞

i=0 β iu(Ct+i), where β ∈ (0,1) is the intertemporal discount factor,
Et (·) is the mathematical expectation operator, which is formed conditional on information
available to the consumer up to period t , It .

The consumers can transfer wealth from period t to period t +1 by buying individual assets,
indexed by i, whose (gross) returns are given by Ri,t+1, i = 1,...,M. By assuming joint condi-
tional lognormality and homoskedasticity of consumption growth and assets returns, we reach
the well-known log-linear Euler equation for the consumption growth rate:

Δ lnCt+1 = μi +ψEt [ri,t+1]+ εi,t+1, i = 1,...,N (2)

where ri,t+1 ≡ lnRi,t+1, i = 1,..,N. The error term is an innovation regarding the consumer’s
information set It , such as Et [εi,t+1] = 0. The parameter ψ > 0 is the elasticity of intertemporal
substitution (EIS), and μi ≡ lnβ + 0.5σ 2

i , where σ 2
i = Vt [ri,t+1 − γΔ lnCt+1].

3 Finally, the log-
linear Euler equation (2) implies that consumer smooth consumption taking into account the
investment opportunities.

Campbell and Mankiw (1989) argue that the time-series on aggregate consumption are gen-
erated by two types of consumers. One of them smooth consumption as proposed by the in-
tertemporal consumer problem and, in accordance with the LCH-PIH, the predictable income
should not affect the consumption path. The other type of consumer follows a simple rule: con-
sume the current income, reason why they are called “rule-of-thumb consumers”. Considering
the Euler equation (2), the Campbell and Mankiw (1989) approach yields the following testing
equation:

Δ lnCt+1 = αi +λEt [Δ lnYt+1]+δEt [ri,t+1]+ εi,t+1, i = 1,...,N (3)

The parameter λ measures the prevalence of the rule-of-thumb behavior. Therefore, Camp-
bell and Mankiw (1989) evaluate whether the predictable income growth rate and the expected
returns on assets are correlated with the consumption growth rate. For US case, Campbell and
Mankiw (1989) and Campbell and Mankiw (1990) findings suggest that λ is approximately
0.5. Thus, the rule-of-thumb behavior is quantitatively important and, obviously, this implies
the failure of the LCH-PIH in aggregate data.

Convincingly, Shea (1995a) argues that Campbell and Mankiw (1989) approach captures a

myopic behavior, because a positive and significant λ̂ implies that consumption tracks pre-
dictable income, regardless of whether it increases or decreases. Under liquidity constraints
the consumption smoothing is partial because consumers cannot borrow when income is tem-
porarily low, but they are not prohibited from saving. As a result, consumption should be more
strongly correlated with predictable income increases than declines, as first noted by Altonji
and Siow (1987). Therefore, while myopia implies symmetric impact of predictable income on
consumption, with liquidity constraints such impact would be asymmetric. Shea (1995a) put
forward a testing equation that exploits these testable implications, given by:

Δ lnCt+1 = αi +λPEt [IP
t+1Δ lnYt ]+λNEt [IN

t+1Δ lnYt+1]+δEt [ri,t+1]+ εi,t+1, i = 1,...,N (4)

where

IP
t+1 =

{
1 , if Δ lnYt+1 > 0

0 , if Δ lnYt+1 ≤ 0

IN
t+1 = 1− IP

t+1

(5)

3Vt is the variance conditional on information available up to period t , It .
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Furthermore, λP (λN) measures the impact of predictable income increase (decrease) on con-
sumption growth rate. Under LCH-PIH, λP and λN should equal zero. Under myopia, λP and
λN should be positive, significant and equal. Last, with liquidity constraints λP should be sig-
nificantly positive, and should be significantly greater than λN .

The specifications proposed by Campbell and Mankiw (1989) and Shea (1995a) can be de-
rived by combining the three consumers types. Suppose that the proportion of consumers who
follows the standard log-linear Euler equation (2) is λ1. The proportion of myopic consumers,
whose consumption growth rate tracks the predictable income growth rate, is λ2. And, λ3 is
the proportion of credit-constrained consumers, who respond more intensively to predictable
income growth rate when it is positive (δ P > δ N). Of course, these proportions adds up to one.
Table presents such proportions and the consumption model specification for each consumer
type.

TABLE I

CONSUMPTION PATH FOR EACH CONSUMER TYPE

Consumer type Proportion Model for Δ lnCt Parameters restrictions

LCH-PIH λ1 μi +ψEt [ri,t+1]+ εi,t+1 ψ > 0
Myopic λ2 Et [Δ lnYt+1] None

Liquidity-constrained λ3 δ PEt [IP
t+1Δ lnYt+1]+δ NEt [IN

t+1Δ lnYt+1] δ P > δ N

Note: Proportions of each consumers type add up to 1 (λ1 +λ2 +λ3 = 1). The indicator variable It
P
+1 takes value one if ΔlnYt+1 > 0, and zero 

otherwise. And, It
N
+1 = 1 − It

P
+1 .

Following an usual strategy to confront non-nested models, we combine the consumption 
model for each consumer type, as follows:

Δ lnCt+1 =λ1 {μi +ψEt [ri,t+1]+ εi,t+1}+λ2Et [Δ lnYt+1]+

λ3

{
δ PEt [IP

t+1Δ lnYt+1]+δ NEt [IN
t+1Δ lnYt+1]

}
, i = 1,...,N

(6)

Assume that λ3 = 0. Because there are only two consumers type, redefine λ2 ≡ λ and λ1 ≡
1− λ . Thus, the model (6) specializes to Campbell and Mankiw (1989) testing equation, as
follows:

Δ lnCt+1 = μ̃i + ψ̃Et [ri,t+1]+λEt [Δ lnYt+1]+ ε̃i,t+1, i = 1,...,N (7)

where μ̃i ≡ (1−λ )μi, ψ̃ ≡ (1−λ )ψ , ε̃i,t+1 ≡ (1−λ )εi,t+1. Obviously, if λ (λ2) is null, the con-
sumers smooth the consumption path according to log-linear Euler equation (2). However, the
larger the λ (λ2), the larger the prevalence of the rule-of-thumb behavior (myopia hypothesis).

Given that IP
t+1 + IN

t+1 = 1, we rewrite the equation (6) to reach the testing equation developed
by Shea (1995a), given by:4

Δ lnCt+1 = μ̃i + ψ̃Et [ri,t+1]+π0Et [IP
t Δ lnYt+1]+π1Et [IN

t+1Δ lnYt+1]+ ε̃i,t+1, i = 1,...,M (8)

where π0 ≡ λ2 +λ3δ P, and π1 ≡ λ2 +λ3δ N . Shea (1995a) performs the following hypotheses
tests:

• H0 : π j = 0 versus H1 : π j �= 0, for j = 0,1;
• H0 : π0 = π1 versus H1 : π0 �= π1.

4We substitute Δ lnYt+1 by IP
t+1Δ lnYt+1 + IN

t+1Δ lnYt+1.
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The first test investigates, individually, if consumption does not depend on positive and nega-
tive predictable income growth rate. Indeed, if both parameters are null, the evidence favors the
LCH-PÌH. The second hypothesis test investigates if consumption growth rate reacts symmet-
rically or not to predictable income growth rate. Under the null hypothesis there is evidence of
myopic behavior, while the alternative hypothesis is in line with liquidity constraints.

Given that Shea (1995a) conjectures that δ P is larger than δ N , π0 should be larger than π1.
Therefore, ideally, we would like to test this inequality. We put forward a simple strategy to
accomplish such hypothesis test. Because IN

t+1 = 1− IP
t+1, we rewrite equation (6) as follows:

Δ lnCt+1 = μ̃i + ψ̃Et [ri,t+1]+πP
0 Et [Δ lnYt+1]+πP

1 Et [IP
t+1Δ lnYt+1]+ ε̃i,t+1, i = 1,...,M (9)

where πP
0 ≡ λ2 + λ3δ N , and πP

1 ≡ λ3(δ P − δ N). To investigate whether δ P > δ N we simply
perform the following hypothesis test:

• H0 : πP
1 = 0 versus H1 : πP

1 > 0.
Under the null hypothesis, there is no asymmetry. However, under the alternative hypothesis,
consumers react more intensely to the increase in income than to the decrease.

Alternatively, we use IP
t+1 = 1− IN

t+1 and the equation (6) becomes:

Δ lnCt+1 = μ̃i + ψ̃Et [ri,t+1]+πN
0 Et [Δ lnYt+1]+πN

1 Et [IN
t+1Δ lnYt+1]+ ε̃i,t+1, i = 1,...,M (10)

where πN
0 ≡ λ2 +λ3δ P, and πN

1 ≡ λ3(δ N −δ P). To investigate whether δ P > δ N we test:
• H0 : πN

1 = 0 versus H1 : πN
1 < 0.

Therefore, specifications (9) and (10) allow us to test whether δ P > δ N by using a simple
t − test . This new approach allows us to really test the liquidity constraints hypothesis.

3. BRAZILIAN LITERATURE

Gomes (2010) applies the Shea (1995a) approach to the Brazilian case. In general the esti-
mates of π0 are positive and significant at 10%, while the estimates of π1 are not significant.
Take into account the estimates that are significant at 10%, the average π̂0 is approximately
1.20. These results are in line with liquidity constraints. However, by means of F −test , Gomes
(2010) does not reject the null hypothesis that the coefficients are equal (H0 : π0 = π1), which is
a evidence in favor of myopia. However, the author presents two important remarks. Given the
difficulty to obtain precise estimates of π1, it seems that F−test lacks power to reject the equal-
ity null hypothesis π0 = π1. In some years of the sample period the growth rates of consumption
and income present opposite signs, which is an evidence against the myopia hypothesis.

Gomes and Paz (2010) investigate the myopia and liquidity constraints hypotheses for Brazil,
Colombia, Peru, and Venezuela. Regarding the Brazilian case, most estimates of π0 are positive
and significant at 10%, while none estimates of π1 is significant. The average value of the
significant estimates of π0 is approximately 0.99. Once again, F − test for π0 = π1 does not
reject this null hypothesis for all instrument lists, at 5% level, which weakens the evidence in
favor of liquidity constraint. Not surprisingly, the authors realize that a key issue is the large
standard error of π1, which would be related with the small number of periods with negative
income growth (approximately 10% of the sample periods).

Despite these econometric issues, it is worth mentioning that the results for the Brazilian case
are at odds to those for the US aggregate consumption obtained by Shea (1995a). His findings
suggest that consumption is more sensitive to predictable income declines than increases, which
is inconsistent with both myopia and liquidity constraints hypotheses. Shea (1995a) called this
result “perverse asymmetry” and mentioned that such a result is qualitatively consistent with
models whose intertemporal preferences exhibit loss aversion.
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4. ECONOMETRIC METHODOLOGY

This Section presents the econometric methodology. Section 4.1 details the data set to esti-
mate the testing specifications (8), (9), (10). The Section 4.2 explains how such specifications
are estimated and what hypotheses tests are performed.

4.1. Data

We use quarterly data from 1996:Q2 to 2019:Q2 (90 observations). Consumption and in-
come data are obtained from the Instituto Brasileiro de Geografia e Estatistica (IBGE) being,
respectively, the Final Consumption of Households and the Gross Domestic Product (GDP).
The asset returns measures are the Selic interest rate and return rate of the Ibovespa index.
The former comes from Central Bank of Brazil (CBB), being the short-term interest rate of the
Brazilian government bond. The later is the return rate of the index of the main stocks listed
in the Brazilian stock market. To calculate real series we employ the National Consumer Price
Index – Índice Nacional de Preços ao Consumidor Amplo – from IBGE. Furthermore, we use
the population series from IBGE to calculate (real) per capita series on consumption and in-
come.5 Finally, we remove the seasonality of real per capita consumption and income by means
of the X-13 methodology. In the remainder of the study, consumption (Ct) and income (Yt) refer
to seasonally adjusted quarterly real per capita consumption and GDP, respectively. The asset
return (rt) refers to the quarterly real interest rate, and the inflation rate (Πt) is calculated from
the National Consumer Price Index.

We also consider additional variables to predict the aggregate income. Indeed, these variables
were selected based on both the potential they could have to predict aggregate income and their
availability for the period of analysis. The credit (Dt) data corresponds to the Credit Operations
Balance from the CBB. The quarterly data corresponds to the last quarter month and it was
also transformed into real per capita terms. Last, its seasonality was removed, as done for the
consumption and income time series.6 From the Fundação Centro de Estudos do Comércio
Exterior (Funcex), we use the Export Quantum index (quantumt) and the Terms of Trade index
(ToTt). The first one is a measure of the Brazilian economy real exports and the second one is
the index of the relative price of the Brazilian exports. These series have a monthly frequency
and the the last month of the quarter value is used. The unemployment rate is obtained from
the Fundação Sistema Estadual de Análise de Dados, Pesquisa de Emprego e Desemprego
(Seade/PED). It measures the monthly unemployment rate (ut) in the São Paulo Metropolitan
Region7 and we use the last month of each quarter. The last set of variables are confidence
indices obtained from the Federação do Comércio de Bens, Serviços e Turismo do Estado de
São Paulo (Fecomercio/SP). The Índice de Condições Econômincas Atuais (iceat) is a present
economic conditions index, the Índice de Expectativas do Consumidor (iect) is a consumer
expectations index, and the Índice de Confiança do consumidor (icct), which is composed by
the iceat and icct , is a consumer confidence index. They are released monthly and the quarter
average was used in the construction of the variables.

Using the variables described above we are able to calculate the consumption and debt share
of income. Thus, we add two more variables to the dataset: Ct/Yt and Dt/Yt .

5The IBGE releases the population number in annual frequency and, for this reason, we interpolate it to obtain a

quarterly measure.
6The time series on the Credit Operations Balance of Brazilian Households starts only 2007, so we opted use the

longer series and opted to use the Credit Operations Balance from the Brazilian Central Bank series.
7We decided to use this series because broader, nation wide unemployment surveys are unavailable for the time

spam of the remaining variables we have in the dataset.
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4.2. Econometric Model

Shea (1995a) estimates the specification (8) using the following strategy. First, he estimates

the predicted income growth rate, Δ̂ lnYt , by regressing it against five instrument lists. Second,
for each instrument list, he builds the indicator variables, as follows:

ÎP
t =

{
1 , if Δ̂ lnYt > 0

0 , if Δ̂ lnYt ≤ 0

ÎN
t = 1− ÎP

t

(11)

Third, Shea (1995a) multiplies ÎP
t by Δ̂ lnYt , and ÎN

t by Δ̂ lnYt , in order to estimate the specifica-
tion (8). For the sake of comparison, we employ such strategy too. However, alternatively, we
predict directly the variables IP

t Δ lnYt and IN
t Δ lnYt , where IP

t and IN
t are defined in (5). Thus,

alternatively to predict the income growth rate, we predict both positive and negative income
growth rates. This approach allows us to employ econometric tools developed to handle the
weak instruments problem.

For the new approach, we estimate the models using four instrumental variables (IV) es-
timators: two-stage least squares (TSLS), limited information maximum likelihood (LIML),
Fuller-k and continuously updated GMM (CUE-GMM). The LIML and Fuller-k provide more
reliable point estimates and inferences under weak instruments than does TSLS. Indeed, as
discussed by Stock et al. (2002), LIML and Fuller-k estimators are partially robust to the weak
instrument problem. Thus, following Yogo (2004), we employ these estimators besides the
TSLS. In addition, to handle with heteroscedastic and serial correlated errors, we employ the
CUE-GMM estimator.

To estimate the models of interest, we need instrument variables that are not only exogenous,
but also correlated with the endogenous variables. Thus, in order to test the instruments validity,
we rely on the Sargan test of overidentifying restrictions, where the null hypothesis is that
instruments are exogenous. Of course, we are aware that weak instruments problem makes the
Sargan test unreliable.

Regarding the presence of weak instruments, we inspect the F-statistic of the first-stage re-
gression of the TSLS estimator, and we employ the tests developed by Cragg and Donald (1993)
and Kleibergen and Paap (2006). The Cragg-Donald statistic is based on the eigenvalue of the
matrix version of the F-statistic from the first-stage TSLS regression. This test assumes that
error term is i.i.d and its critical values were tabulated by Yogo and Stock (2005). When we
employ the CUE-GMM, we report the Kleibergen-Paap statistic, which allows the use of het-
eroscedasticity and autocorrelation consistent (HAC) estimators for the covariance matrix. In
this case, the critical values are the ones tabulated by Yogo and Stock (2005) for the LIML case.
We also report an underidentification test – the Anderson LM test for LIML, Fuller-k and TSLS
or Kleibergen-Paap LM for the GMM-CUE estimator – to evaluate whether the instruments are
irrelevant or not.

We also employ confidence intervals that are (fully) robust to weak instruments. Such con-
fidence intervals are based on similar tests as the Anderson-Rubin (AR) one (Anderson et al.
(1949)). Guggenberger et al. (2012) developed a test based on AR statistic, which is suitable for
many endogenous variables case. Basically, the test uses the LIML estimates for the strongly
identified parameters, allowing us to construct robust confidence interval to a subset of endoge-
nous variables. The author shows that this subset AR test has correct asymptotic size, while sub-
set tests based on the Lagranger Multiplier statistic are distorted asymptotically and, because
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the LM statistic appears in the subset Conditional Likelihood (CLR) subset test, Guggenberger
et al. (2012) conjecture that the latter test is also distorted.8

Hypothesis tests on the estimated coefficients are performed using a F–test for the specifica-
tions following specification (8) and one-tailed t-tests for specifications (9) and (10). Our new
approach allows us to test the perverse asymmetry hypothesis by simply change the inequal-
ity of the alternative hypothesis. Table II summarizes the hypotheses tests of interest for each
model.

TABLE II

HYPOTHESES TESTS

Model Hypothesis Test Interpretation

(8) H0 : π0 = π1 Myopia
H1 : π0 �= π1 Liquidity constraints or perverse asymmetry

(9) H0 : πP
1 = 0 Myopia

H1 : πP
1 > 0 Liquidity constraints

(9) H0 : πP
1 = 0 Myopia

H1 : πP
1 < 0 Perverse asymmetry

(10) H0 : πN
1 = 0 Myopia

H1 : πN
1 < 0 Liquidity constraints

(10) H0 : πN
1 = 0 Myopia

H1 : πN
1 > 0 Perverse asymmetry

The log-linear representation of the consumer’s Euler equations comes from log-normality
and homocedasticity assumptions. These auxiliary assumptions implies that the error term of
log-linear Euler equation (2) is conditionally Gaussian, homoscedastic and uncorrelated with
elements of the conditioning set It . Furthermore, the error term must be independent of any
function of the variables in It . Following Gomes and Issler (2017), we investigate these restric-
tions by means of residual-based tests of normality, conditional homoskedasticity and serial
correlation, and the Ramsey Regression Equation Specification Error Test (RESET). It is worth
mentioning that we apply versions of these diagnostic tests suitable for instrumental variable
setting.

We investigate whether residuals are normally distributed using the test developed by
D’agostino et al. (1990), whose null hypothesis is that the series has normal distribution. The
heteroscedasticity is examined using the test for instrumental variables developed by Pagan and
Hall (1983) whose null hypothesis is that residuals are homoskedastic. To do so, we use the full
set of instruments as indicator variables hypothesized to be related to the heteroscedasticity in
the log-linear Euler equations. For serial correlation, we use a test proposed by Cumby and
Huizinga (1992). The null hypothesis is that the residuals of the regression is a moving average
up to order q against the alternative that the autocorrelations are nonzero at lags greater than
q. We use q = 0 , which means that we test whether the residual series is uncorrelated against
the alternative that there is serial correlation of first order. The test is robust to conditional het-
eroscedasticity and an autocorrelation-robust covariance matrix is computed using the Bartlett
kernel. Finally, for testing the omission of higher order variables, we use Hashem Pesaran and

8Inference on a subset of parameters can be done by projection methods (see, for instance, Dufour and Taamouti

(2005)). However, Guggenberger et al. (2012) also shows that the subset AR has non-worse power than projection-

type methods.
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Taylor (1999) version of the RESET test. Under the null that there are no neglected nonlineari-
ties, and the residuals should be uncorrelated with low-order polynomials in the forecast values
of the dependent variable. We employ a polynomial of third degree.

5. RESULTS

In Section 5.1 we form the instrument lists used to estimate the specifications (8), (9) and
(10). In Section 5.2 we report the estimation of specification (8) using the Shea (1995a) ap-
proach. Finally, Section 5.3 reports the results from our new methodology.

5.1. Instrument Sets

To estimate the specifications (8), (9) and (10) we need a instrument list capable to predict
the income growth rate (increase and decrease) and assets returns (interest rate). Usually, the
instrument lists are based on lagged variables that appear in the testing equations. However,
we explore additional variables in an attempt to minimize the weak instruments problem. The
variables candidates to be in the instrument sets are the second and third lags of the variables
described on Section 4.1: consumption growth (Δ lnCt), income growth (Δ lnYt), debt growth
(Δ lnDt), inflation rate (Πt), interest rate (rt), unemployment rate (ut), terms of trade (ToTt),
export quantum index (quantumt), present economic conditions index (iceat), consumer expec-
tations index (iect), consumer confidence index (icct), consumption-income ratio (Ct/Yt) and
debt-income ratio (Dt/Yt).

To select the most relevant instruments for the endogenous variables, we employ forward
and backward stepwise selection methods. In both methods, we have a set of candidate regres-
sors that includes all variables we are considering adding to the model and a test statistic that
is used to decide if a candidate variable will be added or dropped. In the forward selection,
the algorithm starts with an empty model. In the step (i), it considers adding all the candidate
regressors one-by-one; in the next step (ii), it adds the most significant variable if the signifi-
cance level is bellow a predetermined threshold. After that, steps (i) and (ii) are repeated until
no variable has statistical significance bellow the threshold. The backward selection starts with
all the candidate regressors included in the model. In the step (i), it considers dropping all vari-
ables one-by-one; in step (ii), it drops the least significant variable if the significance level is
above the predetermined threshold. After that, steps (i) and (ii) are repeated until no variable
has statistical significance above the threshold.

These selection methods are used for each endogenous variables – ΔYt , IN
t Δ lnYt , IP

t Δ lnYt and
ri,t –, and the Wald test is used in each step of the algorithm. The threshold for the significance
level is 0.05, unless the number of variables selected by the procedure is smaller than four, given
that the testing equations have the maximum of 3 endogenous variables. When this happens,
we raise the the significance level until we have a minimum of 4 variables for each of the
endogenous variables, which is the minimum number of instruments necessary to apply the
Sargan overidentification test. After that, we have two sets of variables for each variable: one
selected via forward and another selected using the backward method. Finally, the set with the
higher F statistic is chosen. Table III show the results of this strategy.

The only variable that is present in all instrument sets is the inflation rate lagged twice. Most
of the selected predictors are lagged variables included in the testing equation, but especially for
the positive and negative income growth, alternative predictors were selected instead the lagged
income growth and interest rate. As expected, the interest rate is the variable with the highest F
statistic. Table IV summarizes the instrument set that will be used for each endogenous variable
to estimate the specifications (8), (9) and (10).
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TABLE III

SELECTED INSTRUMENTS

Δ lnYt IP
t Δ lnYt IN

t Δ lnYt ri,t

Ct−2/Yt−2 -0.2151∗∗∗

(0.0812)
Πt−2 -0.4956∗∗∗ -0.2216∗ -0.2105∗∗∗ 0.9237∗∗∗

(0.1663) (0.1186) (0.0756) (0.1483)
Dt−2/Yt−2 -0.1171∗∗

(0.0520)
Δ lnYt−3 -0.1645∗∗

(0.0739)
ToTt−3 -0.0004∗∗∗

(0.0001)
ut−3 0.0008∗∗∗

(0.0003)
Δ lnCt−3 -0.0656∗∗

(0.0304)
icct−2 0.0004∗∗∗

(0.0001)
iect−3 -0.0003∗ 0.0002∗∗∗

(0.0001) (0.0000)
iceat−2 0.0001∗∗

(0.0001)
ri,t−2 0.8083∗∗∗

(0.0932)
Ct−3/Yt−3 0.2303∗∗∗

(0.0825)
constant 0.2683∗∗∗ 0.0454∗∗∗ -0.0349∗∗∗ -0.1688∗∗∗

(0.0726) (0.0131) (0.0091) (0.0558)

T 90.0000 90.0000 90.0000 90.0000
R2 0.2092 0.2080 0.2561 0.5453
F 5.6212 5.5812 7.3167 25.4837

Note: Standard errors in parentheses ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table shows the selected instrument set for each variable.

The variables appearing as instruments are: consumption (C), income (Y ), inflation rate (Π), debt (D), terms of trade (ToT ), unemployment in

the Metropolitan Area of São Paulo (u), consumer confidence index (icc), consumer expectation index (iec), actual economic condition index

(ieca) and the selic rate (ri).

TABLE IV

INSTRUMENT SETS SUMMARY

Instrument Set Variables

Y Πt−2, Ct−2/Yt−2, Dt−2/Yt−2, Δ lnYt−3

YP Πt−2, ToTt−3, icct−2, iect−3

YN Πt−2, ut−3, Δ lnYt−3, iect−3

S Πt−2, iceat−2, ri,t−2, Ct−3/Yt−3

In the next session, we use the selected instrument sets in the estimation of the proposed 
models. In addition to the sets described in Table IV, we also use the union of the sets referring 
to the endogenous variables present in the specification being estimated. For instance, in the 
specification (8) the endogenous variables are the interest rate and both positive and negative 
income growth rate. Using Shea (1995a) approach, the instrument sets are: S, Y, and S ∪ Y. 
Because our new approach predicts income growth rate increases and decreases, the instrument 
sets are: S, YP, YN and S ∪YP ∪ YN .
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5.2. Shea’s approach

In this section, we present the results based on the same procedure used by Shea (1995a).
Table V shows the results of the first stage regressions. The first line of the table shows the
dependent variable, and the second line the instrument set used in each column. Because the
endogenous variables are the income growth rate and the interest rate, we also used the union
of the instrument sets for those variables in the first stage. The results in table V show that it is
easier to predict the interest rate than the income growth rate, as can be seem in the F statistics.

TABLE V

SHEA (1995A) STRATEGY - FIRST STAGE

Dependent Variable Δ lnYt ri,t

Instrument Set Y S Y∪S Y S Y∪S

Πt−2 -0.4956∗∗∗ -0.3289 -0.6505∗∗∗ 0.1200 0.9237∗∗∗ 0.7478∗∗∗

(0.1663) (0.2117) (0.2357) (0.1394) (0.1483) (0.1709)
Ct−2/Yt−2 -0.2151∗∗∗ -0.1910 0.2977∗∗∗ 0.2364

(0.0812) (0.2022) (0.0680) (0.1467)
Dt−2/Yt−2 -0.1171∗∗ -0.1896∗∗ -0.2784∗∗∗ -0.1198∗∗

(0.0520) (0.0798) (0.0436) (0.0579)
Δ lnYt−3 -0.1645∗∗ -0.1579∗∗ 0.0131 0.0218

(0.0739) (0.0759) (0.0619) (0.0550)
iceat−2 0.0000 0.0000 0.0001∗∗ 0.0002∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
ri,t−2 0.0965 -0.1931 0.8083∗∗∗ 0.6243∗∗∗

(0.1331) (0.1776) (0.0932) (0.1288)
Ct−3/Yt−3 -0.1452 0.0820 0.2303∗∗∗ 0.1009

(0.1177) (0.1927) (0.0825) (0.1397)
constant 0.2683∗∗∗ 0.0939 0.2791∗∗∗ 0.1205∗ -0.1688∗∗∗ -0.1089

(0.0726) (0.0796) (0.0966) (0.0609) (0.0558) (0.0700)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000
R2 0.2092 0.1149 0.2254 0.4182 0.5453 0.5735
F 5.6212 2.7572 3.4083 15.2727 25.4837 15.7519

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

After running the first stage regressions, we estimate the second stage regression and report

the results in Table VI. For all instrument sets, the coefficient for ÎP
t Δ̂ lnYt is statistically dif-

ferent from zero and larger than the coefficient for ÎN
t Δ̂ lnYt . Indeed, we do not reject that the

coefficient for ÎN
t Δ̂ lnYt is equal zero for any instrument set. So far, the evidence is in favor of

the liquidity constraints hypothesis. However, when we formally test whether these coefficients 
are the same (π0 = π1), we do not reject such null hypothesis. In this sense, we do not reject the 
myopia hypothesis. These results are in line with those in Gomes (2010) and Gomes and Paz 
(2010). It seems that consumers face liquidity constraints, but the statistical test has no power 
to detect it.

5.3. The new approach

In this section we focus on the results based on the new approach where we estimate the spec-
ifications (8), (9) and (10) applying conventional instrumental variables estimators. Because 
the results across the estimators are similar, we report in this Section those based on LIML 
estimator.
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TABLE VI

SHEA (1995A) STRATEGY

Y S Y∪S

ÎN
t Δ̂ lnYt 0.4698 0.2790 0.5026

(0.6216) (0.8052) (0.5109)

ÎP
t Δ̂ lnYt 1.1904∗∗∗ 1.7232∗∗∗ 1.1633∗∗∗

(0.3079) (0.4171) (0.3292)
r̂i,t -0.2936∗ -0.0874 -0.1736

(0.1533) (0.1394) (0.1326)
constant 0.0040 -0.0031 0.0016

(0.0041) (0.0044) (0.0040)

T 90.0000 90.0000 90.0000
R2 0.2434 0.2228 0.2214

Test for H0 : π0 = π1 [p-value]
H1 : π0 �= π1 0.3765 0.1696 0.3642

Note: Standard errors in parentheses ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The results based on TSLS, Fuller-k and GMM-CUE estimators are reported in the Appendix
6.

Tables VII to IX report the LIML estimations of the specifications (8), (9) and (10), respec-
tively. The first line in each table indicates the instrument set used and the first column describe
the variables included in the specification and the tests performed. From the second to the last
columns, the results for each instrument set are reported.

Table VII reports the results for the testing equation (8), and its version without the interest
rate. The coefficient of predictable income decrease is positive and significant, at 5%, for four
instrument sets. Based on the Anderson LM test, these are the sets of instruments that reject
the null hypothesis that the model is underidentified. In this sense, when the model is iden-
tified, there is evidence that consumers react to predictable income decrease. Regarding the
predictable income increase and the expected interest rate, they are not relevant, at 5% signifi-
cance level, across all instrument sets. By focusing on cases where the model is identified, the
Cragg-Donald test suggest that the instruments are weak. Indeed,the first-stage F statistic are
very low, except for the interest rate. Although the Sargan test does not reject any specification,
its results should be viewed with caution due to the weak instruments problem.

By focusing on myopia and liquidity constraints testing, we notice that the null hypothe-
sis π0 = π1 is rejected, at 5% significance level, only for two specifications (see Table VII).
What does these two specifications have in common? First, they do not contain the interest
rate. Second, they reject the under-identification null hypothesis of Anderson LM test. Third,
they present the two largest Cragg-Donald statistic. Therefore, when the model is identified and
the instruments are not so weak, we reject the myopia hypothesis. These findings reinforce the
importance of both verifying whether the instruments are weak and applying techniques devel-
oped to deal with such a problem. Finally, regarding the log-normality tests, there is evidence
against the normality assumption.

Table VIII reports the results for the specification (9), in which the coefficient of predictable
income increase, πP

1 = λ3(δ P − δ N), tells us whether consumers react more intensively to in-
come increases than decreases. Once again, four specifications reject the null hypothesis that
the model is underidentified (Anderson LM test). By focusing on such specifications, the point
estimates suggest that δ N > δ P because πP

1 < 0. Excluding the interest rate, this coefficient
becomes statistically different from zero at the 5% significance level. With the interest rate, it
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TABLE VII

LIML ESTIMATIONS BASED ON SPECIFICATION (8)

YP YN S YP ∪YN ∪S YP YN YP ∪YN

IN
t Δ lnYt 1.8906∗∗∗ 2.7040 1.4141 1.8798∗∗∗ 2.1649∗∗∗ 3.8862 1.8537∗∗∗

(0.6739) (2.3910) (1.1573) (0.5162) (0.5462) (3.6315) (0.4547)
IP
t Δ lnYt 0.3816 -0.9983 1.2598∗ 0.4661 0.3365 -2.3844 0.3342

(0.3260) (2.8758) (0.7516) (0.3663) (0.3368) (4.5483) (0.3293)
ri,t -0.1757 -0.1888 -0.0651 -0.0677

(0.3035) (0.3530) (0.1734) (0.1304)
constant 0.0131∗∗ 0.0299 0.0005 0.0100∗ 0.0111∗∗ 0.0442 0.0098∗∗

(0.0059) (0.0342) (0.0104) (0.0055) (0.0050) (0.0582) (0.0047)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
Sargan 0.8293 0.6088 0.8638 0.3770 0.8394 0.8192 0.5632

Test for H0 : π0 = π1 [p-value]
H1 : π0 �= π1 0.0846 0.4787 0.9312 0.0664 0.0155 0.4397 0.0257

Instrument Relevance [statistic]
Anderson LM 6.4754∗∗ 0.7334 3.6755 19.1943∗∗∗ 15.9515∗∗∗ 0.8815 18.7059∗∗∗

Cragg-Donald 1.6475 0.1746 0.9048 2.4096 4.5777 0.2102 3.6296

First-Stage F [statistic]
IN
t Δ lnYt 4.6316 7.3166 2.5171 3.0923 4.6316 7.3166 4.8074

IP
t Δ lnYt 5.5812 1.7369 2.1434 2.6417 5.5812 1.7369 3.9720

ri,t 4.2762 5.8685 25.4837 12.0186 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.4824 0.3585 0.4237 0.5235 0.7355 0.3832 0.6236
Heterosk. 0.0733 0.4798 0.1083 0.1906 0.0549 0.9287 0.1755
RESET 0.8916 0.9524 0.9972 0.4303 0.7990 0.9175 0.5596
Normality 0.0019 0.0706 0.1325 0.0041 0.0028 0.0452 0.0081

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.

is only significant at 10%. For all specifications, the Cragg-Donald test shows signs that instru-
ments are weak, which compromises the Sargan test. Indeed, the first-stage F statistics point
out the difficult to predict Δ lnYt and IP

t Δ lnYt .
Regarding the myopia and liquidity constraints tests, we dot not reject the null hypothesis

πP
1 = 0 in favor of the alternative hypothesis πP

1 > 0 (see Table VIII). Therefore, we find no
evidence in favor of liquidity constraints hypothesis. We test for “perverse assymetria” by con-
fronting the null hypothesis πP

1 = 0 against the alternative hypothesis πP
1 < 0. In such case, we

reject the null hypothesis, at 5% significance level, as long as the Anderson LM test indicates
that the model is not underidentified and the Cragg-Donald statistics are not that low. There-
fore, we find evidence that δ N > δ P when the instruments are not so weak. Last, once again,
the log-normality tests suggest that normality assumption is rejected.

Table IX reports the results for specification (10), in which the coefficient of predictable in-
come decrease, πN

1 = λ3(δ N −δ P), tells us whether consumers react more intensively to income
increases than decreases. With this testing equation, no coefficient is statistically different from
zero, at 5% level. Indeed, the Anderson LM test rejects the underidenification null hypothesis,
at 10% significance level, only for two instrument specifications. Focusing on these specifica-
tions, πP

1 is differently from zero, at 10% significance level, and the point estimates suggest
that δ N > δ P because πN

1 > 0. It is worth mentioning that Cragg-Donald statistics indicate that
the instruments are weak, and the first-stage F statistics ratify the difficult to predict Δ lnYt
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TABLE VIII

LIML ESTIMATIONS BASED ON SPECIFICATION (9)

Y YP S Y∪YP ∪S Y YP Y∪YP

Δ lnYt -0.9713 1.8906∗∗∗ 1.4141 1.9641∗∗∗ 5.6311 2.1649∗∗∗ 2.2571∗∗∗

(13.9704) (0.6739) (1.1573) (0.6046) (5.9476) (0.5462) (0.6228)
IP
t Δ lnYt 3.2480 -1.5090∗ -0.1543 -1.5502∗ -7.3313 -1.8284∗∗ -1.9473∗∗

(22.3805) (0.8749) (1.7868) (0.9152) (9.5520) (0.7553) (0.9132)
ri,t -0.4212 -0.1757 -0.0651 -0.1089

(0.9467) (0.3035) (0.1734) (0.1362)
constant -0.0120 0.0131∗∗ 0.0005 0.0117∗ 0.0451 0.0111∗∗ 0.0117∗

(0.1204) (0.0059) (0.0104) (0.0062) (0.0596) (0.0050) (0.0060)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
Sargan 0.0862 0.8293 0.8638 0.1942 0.2188 0.8394 0.2048

Test for H0 : πP
1 = 0 [p-value]

H1 : πP
1 > 0 0.4425 0.9559 0.5343 0.9530 0.7776 0.9912 0.9821

H1 : πP
1 < 0 0.5575 0.0441 0.4657 0.0470 0.2224 0.0088 0.0179

Instrument Relevance [statistic]
Anderson LM 2.9896 6.4754∗∗ 3.6755 18.9579∗∗∗ 3.6039 15.9515∗∗∗ 18.1368∗∗∗

Cragg-Donald 0.7301 1.6475 0.9048 2.1082 0.8864 4.5777 2.9565

First-Stage F [statistic]
Δ lnYt 5.6211 5.2361 2.7572 2.6441 5.6211 5.2361 3.7260
IP
t Δ lnYt 4.3765 5.5812 2.1434 2.3877 4.3765 5.5812 3.5220

ri,t 15.2726 4.2762 25.4837 10.7948 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.7796 0.4824 0.4237 0.5678 0.2944 0.7355 0.8014
Heterosk. 0.4974 0.0733 0.1083 0.1965 0.8630 0.0549 0.0845
RESET 0.0125 0.8916 0.9972 0.3661 0.6870 0.7990 0.7314
Normality 0.0287 0.0019 0.1325 0.0025 0.0000 0.0028 0.0018

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.

and IN
t Δ lnYt . Not surprisingly, when testing the null hypothesis πN

1 = 0 against the alternative
hypothesis πN

1 > 0 or πN
1 < 0, we do not reject the null hypothesis.

Comparing the Cragg-Donald statistics in Tables VII, VIII and IX, it seems that specifi-
cations (8) and (9) are better specified than specification (10). In other words, given our in-
struments sets, it is easier predict Δ lnYt and IP

t Δ lnYt than IN
t Δ lnYt . However, in all cases the

diagnostic tests in Tables VII, VIII and IX show evidence that instrument are weak. For this
reason, we compute robust confidence intervals based on the Anderson et al. (1949) statistics
for specifications (8), (9) and (10) and their versions without the interest rate because is was not
rlevant in previous regressions. For each model we use instrument set with the highest Cragg
and Donald (1993) statistic (reported in Tables VII, VIII and IX). The results are reported on
Figures 1, 2 and 3.

Figure 1 shows the confidence sets based on the equation (8). Including or excluding the
interest rate, the coefficient of IN

t Δ lnYt , π1, is greater than zero for any value of the coefficient
of IP

t Δ lnYt , π0. Furthermore, when π1 is large – approximately greater than one –, we can see
that π0 = 0 is included in the confidence set. Indeed, the point estimates for π1 are between
1.85 and 2.16 for the specifications in which the Anderson LM test rejects that the model
is underidentified (see Table VII). Taking this into account, there is evidence that consumers
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TABLE IX

LIML ESTIMATIONS BASED ON SPECIFICATION (10)

Y YN S Y∪YN ∪S Y YN Y∪YN

IN
t Δ lnYt -3.2480 3.7023 0.1543 0.8837 7.3313 6.2706 0.2730

(22.3805) (5.2262) (1.7868) (0.9506) (9.5520) (8.1158) (1.2004)
Δ lnYt 2.2767 -0.9983 1.2598∗ 0.7231 -1.7002 -2.3844 1.0711∗

(8.4223) (2.8758) (0.7516) (0.4719) (3.6690) (4.5483) (0.6156)
ri,t -0.4212 -0.1888 -0.0651 -0.1318

(0.9467) (0.3530) (0.1734) (0.1286)
constant -0.0120 0.0299 0.0005 0.0078 0.0451 0.0442 0.0007

(0.1204) (0.0342) (0.0104) (0.0065) (0.0596) (0.0582) (0.0083)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
Sargan 0.0862 0.6088 0.8638 0.3826 0.2188 0.8192 0.2646

Test for H0 : πN
1 = 0 [p-value]

H1 : πP
1 > 0 0.5575 0.2403 0.4657 0.1776 0.2224 0.2209 0.4103

H1 : πP
1 < 0 0.4425 0.7597 0.5343 0.8224 0.7776 0.7791 0.5897

Instrument Relevance [statistic]
Anderson LM 2.9896 0.7334 3.6755 14.9146∗ 3.6039 0.8815 11.5084∗

Cragg-Donald 0.7301 0.1746 0.9048 1.5692 0.8864 0.2102 1.7175

First-Stage F [statistic]
IN
t Δ lnYt 3.7910 7.3166 2.5171 3.2287 3.7910 7.3166 4.0826

Δ lnYt 5.6211 4.6889 2.7572 2.8508 5.6211 4.6889 3.4590
ri,t 15.2726 5.8685 25.4837 11.4796 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.7796 0.3585 0.4237 0.3697 0.2944 0.3832 0.4073
Heterosk. 0.4974 0.4798 0.1083 0.1677 0.8630 0.9287 0.0699
RESET 0.0125 0.9524 0.9972 0.6246 0.6870 0.9175 0.5418
Normality 0.0287 0.0706 0.1325 0.0069 0.0000 0.0452 0.0554

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.

react more intensely to income decreases than increases, which is a evidence in favor of the
“perverse assymetria” hypothesis.

Figure 2 reports the confidence set for the specification (9). Including or excluding the in-
terest rate, the coefficient of Δ lnYt , πP

0 , is greater than zero for any value of the coefficient of
IP
t Δ lnYt , πP

1 . For large values of πP
0 , the confidence sets suggest that πP

1 = 0. It is worth men-
tioning that, the estimates of πP

0 in Table VIII – when the underidentification null hypothesis
is rejected – range from 1.89 to 2.25. Taking into account these results, the conclusions are
similar to the ones from model (8) and we have evidence for the “perverse asymmetry”as well.

Figure 3 shows the confidence sets based on the specification (10). The diagnostics tests in
Tables VII, VIII and IX suggest that specification (10) is more affected by the weak instru-
ment problem than the specifications (8) and (9). Not by chance, the Figure 3 show confidence
sets that are less informative. They show that the coefficients are not equal to zero, but any
one of them can be null. When πN

0 ≥ 0.5, note that πN
1 = 0 is a feasible value, indicating for

myopia. However, for πN
0 < 0.5 the plots suggests that πN

1 > 0, which is in favor of “perverse
asymmetry” hypothesis.

Alike the results of Shea (1995a) and Shea (1995b), this section results show evidence that
the “perverse asymmetry” is the reason of the LCH-PIH failure. Interestingly, the evidence
found in this Section contrasts with the ones found in Section 5.2, where we used the Shea
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FIGURE 1.—Confidence Set for IP
t Δ lnYt and IN

t Δ lnYt

(a) Including the interest rate (b) Excluding the interest rate

Note: The plots the robust confidence set for credit and income at a 95% confidence level. The instrument set for each specification 
was chosen based on the highest Cragg and Donald (1993) statistic in Table VII.

FIGURE 2.—Confidence Set for IP
t Δ lnYt and ItΔ lnYt

(a) Including the interest rate (b) Excluding the interest rate

Note: The plots the robust confidence set for credit and income at a 95% confidence level. The instrument set for each specification was 
chosen based on the highest Cragg and Donald (1993) statistic in Table VIII.

(1995a) approach, as in Gomes (2010) and Gomes and Paz (2010). The main difference be-
tween Shea (1995a) and our new approach is how the positive/negative income growth is cal-

t̂
P and Ît

Nculated. While in Shea (1995a) I are calculated using Δ ln̂Yt , in our new approach the
indicator variables IP

t and IN
t are calculated using the realized value of Δ lnYt and, after that,

we estimate Et [IP
t Δ lnYt ] and/or Et [IN

t Δ lnYt ]. Indeed, our approach allow us to both perform in-
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FIGURE 3.—Confidence Set for IN
t Δ lnYt and Δ lnYt

(a) Including the interest rate (b) Excluding the interest rate

Note: The plots the robust confidence set for credit and income at a 95% confidence level. The instrument set for each specification was 
chosen based on the highest Cragg and Donald (1993) statistic in Table IX.

equality tests of interest and employ econometric tools developed to deal with weak instruments 
problem.

6. CONCLUSIONS

According to the LCH-PIH, predictable income changes should not affect the consumers’ 
adjustment of the consumption. However, it’s well documented in the literature its failure in 
aggregate data (see, for example, Campbell and Mankiw (1989; 1990)). In attempt to under-
stand the reasons behind such a failure, Shea (1995a) tests two hypothesis: myopia and liquidity 
constraints. In the case of myopia, consumption should respond equally to increases and de-
clines of income growth. Under liquidity constraints, consumption should be more strongly 
correlated with predictable income increases than declines. However, Shea (1995a) finds that 
aggregate consumption is more sensitive to predictable income declines than to predictable 
income increases, which is inconsistent with both myopia and with liquidity constraints.

In this work, we adapt Shea (1995a) strategy so that we could confront these hypothesis, and 
the “perverse asymmetry” as well, in a more straightforward way. Our proposed approach also 
allows us to use the usual instrumental variables estimators and weak instrument robust tools. 
Using Brazilian quarterly data, we found evidence that consumption growth responds more 
intensively to negative predictable income growth than to positive one. Those results are in 
line with the findings of Shea (1995a) using US data, but contrasts with the findings of Gomes 
(2010) and Gomes and Paz (2010) for the Brazilian case.
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TABLE A.X

TSLS ESTIMATIONS BASED ON SPECIFICATION (8)

YP YN S YP ∪YN ∪S YP YN YP ∪YN

IN
t Δ lnYt 1.8869∗∗∗ 2.2673 1.4146 1.6203∗∗∗ 2.1394∗∗∗ 2.8597 1.7405∗∗∗

(0.6715) (1.5866) (1.1515) (0.4210) (0.5375) (1.7730) (0.4191)
IP
t Δ lnYt 0.3820 -0.4656 1.2563∗ 0.4727 0.3394 -1.0767 0.3563

(0.3253) (1.8821) (0.7478) (0.2922) (0.3320) (2.1734) (0.3000)
ri,t -0.1763 -0.2189 -0.0651 -0.0771

(0.3024) (0.2736) (0.1730) (0.1187)
constant 0.0131∗∗ 0.0236 0.0005 0.0091∗∗ 0.0110∗∗ 0.0274 0.0091∗∗

(0.0059) (0.0226) (0.0104) (0.0046) (0.0049) (0.0279) (0.0043)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
Sargan 0.8292 0.5754 0.8637 0.3421 0.8384 0.7416 0.5519

Test for H0 : π0 = π1 [p-value]
H1 : π0 �= π1 0.0844 0.4254 0.9290 0.0633 0.0155 0.3119 0.0263

Instrument Relevance [statistic]
Anderson LM 6.4754∗∗ 0.7334 3.6755 19.1943∗∗∗ 15.9515∗∗∗ 0.8815 18.7059∗∗∗

Cragg-Donald 1.6475 0.1746 0.9048 2.4096 4.5777 0.2102 3.6296

First-Stage F [statistic]
IN
t Δ lnYt 4.6316 7.3166 2.5171 3.0923 4.6316 7.3166 4.8074

IP
t Δ lnYt 5.5812 1.7369 2.1434 2.6417 5.5812 1.7369 3.9720

ri,t 4.2762 5.8685 25.4837 12.0186 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.4812 0.5168 0.4223 0.4330 0.7224 0.4382 0.5764
Heterosk. 0.0734 0.1662 0.1067 0.2331 0.0551 0.5543 0.1898
RESET 0.8915 0.9213 0.9972 0.3327 0.7965 0.8239 0.5187
Normality 0.0019 0.0355 0.1311 0.0038 0.0032 0.1222 0.0080

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.

APPENDIX: TSLS, GMM AND FULLER-K RESULTS

This Appendix presents the estimation of equations 8, 9 and 10 for other three estimators:
two-stage least square (TSLS), continuously updating GMM (CUE-GMM) and Fuller-k.
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TABLE A.XI

TSLS ESTIMATIONS BASED ON SPECIFICATION (9)

Y YP S Y∪YP ∪S Y YP Y∪YP

Δ lnYt 1.3208 1.8869∗∗∗ 1.4146 1.5127∗∗∗ 2.0566∗∗ 2.1394∗∗∗ 1.7907∗∗∗

(1.0597) (0.6715) (1.1515) (0.4181) (1.0066) (0.5375) (0.4549)
IP
t Δ lnYt -0.5277 -1.5049∗ -0.1584 -1.0552∗ -1.6703 -1.7999∗∗ -1.3985∗∗

(1.6611) (0.8721) (1.7774) (0.6134) (1.5813) (0.7438) (0.6597)
ri,t -0.2527 -0.1763 -0.0651 -0.1186

(0.1576) (0.3024) (0.1730) (0.1164)
constant 0.0083 0.0131∗∗ 0.0005 0.0096∗∗ 0.0102 0.0110∗∗ 0.0090∗∗

(0.0096) (0.0059) (0.0104) (0.0045) (0.0100) (0.0049) (0.0044)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
Sargan 0.0771 0.8292 0.8637 0.1533 0.0769 0.8384 0.1599

Test for H0 : πP
1 = 0 [p-value]

H1 : πP
1 > 0 0.6243 0.9560 0.5354 0.9555 0.8531 0.9912 0.9816

H1 : πP
1 < 0 0.3757 0.0440 0.4646 0.0445 0.1469 0.0088 0.0184

Instrument Relevance [statistic]
Anderson LM 2.9896 6.4754∗∗ 3.6755 18.9579∗∗ 3.6039 15.9515∗∗∗ 18.1368∗∗∗

Cragg-Donald 0.7301 1.6475 0.9048 2.1082 0.8864 4.5777 2.9565

First-Stage F [statistic]
Δ lnYt 5.6211 5.2361 2.7572 2.6441 5.6211 5.2361 3.7260
IP
t Δ lnYt 4.3765 5.5812 2.1434 2.3877 4.3765 5.5812 3.5220

ri,t 15.2726 4.2762 25.4837 10.7948 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.3344 0.4812 0.4223 0.4019 0.6798 0.7224 0.5709
Heterosk. 0.0547 0.0734 0.1067 0.2400 0.0196 0.0551 0.0700
RESET 0.5743 0.8915 0.9972 0.2322 0.4959 0.7965 0.6277
Normality 0.0028 0.0019 0.1311 0.0021 0.0043 0.0032 0.0080

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.
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TABLE A.XII

TSLS ESTIMATIONS BASED ON SPECIFICATION (10)

Y YN S Y∪YN ∪S Y YN Y∪YN

IN
t Δ lnYt 0.5277 2.7329 0.1584 0.8379 1.6703 3.9364 0.6208

(1.6611) (3.4283) (1.7774) (0.6750) (1.5813) (3.8924) (0.7640)
Δ lnYt 0.7931 -0.4656 1.2563∗ 0.6182∗ 0.3863 -1.0767 0.7573∗∗

(0.6503) (1.8821) (0.7478) (0.3287) (0.6310) (2.1734) (0.3816)
ri,t -0.2527 -0.2189 -0.0651 -0.1229

(0.1576) (0.2736) (0.1730) (0.1161)
constant 0.0083 0.0236 0.0005 0.0079 0.0102 0.0274 0.0038

(0.0096) (0.0226) (0.0104) (0.0049) (0.0100) (0.0279) (0.0053)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
Sargan 0.0771 0.5754 0.8637 0.3450 0.0769 0.7416 0.2203

Test for H0 : πN
1 = 0 [p-value]

H1 : πN
1 > 0 0.3757 0.2138 0.4646 0.1089 0.1469 0.1573 0.2093

H1 : πN
1 < 0 0.6243 0.7862 0.5354 0.8911 0.8531 0.8427 0.7907

Instrument Relevance [statistic]
Anderson LM 2.9896 0.7334 3.6755 14.9146∗ 3.6039 0.8815 11.5084∗

Cragg-Donald 0.7301 0.1746 0.9048 1.5692 0.8864 0.2102 1.7175

First-Stage F [statistic]
IN
t Δ lnYt 3.7910 7.3166 2.5171 3.2287 3.7910 7.3166 4.0826

Δ lnYt 5.6211 4.6889 2.7572 2.8508 5.6211 4.6889 3.4590
ri,t 15.2726 5.8685 25.4837 11.4796 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.3344 0.5168 0.4223 0.3366 0.6798 0.4382 0.3822
Heterosk. 0.0547 0.1662 0.1067 0.2147 0.0196 0.5543 0.0704
RESET 0.5743 0.9213 0.9972 0.6219 0.4959 0.8239 0.6093
Normality 0.0028 0.0355 0.1311 0.0029 0.0043 0.1222 0.0102

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.
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TABLE A.XIII

CUE-GMM ESTIMATIONS BASED ON SPECIFICATION (8)

YP YN S YP ∪YN ∪S YP YN YP ∪YN

IN
t Δ lnYt 1.8909∗∗∗ 2.8688 1.4093 2.2704∗∗∗ 2.1822∗∗∗ 3.6376 1.9466∗∗∗

(0.6483) (2.2949) (1.0523) (0.4915) (0.5343) (2.7308) (0.4295)
IP
t Δ lnYt 0.3793 -1.1415 1.2554∗∗ 0.1012 0.3234 -1.9271 0.2469

(0.3139) (2.4852) (0.6143) (0.3438) (0.3305) (3.0453) (0.3083)
ri,t -0.1761 -0.1844 -0.0644 -0.0426

(0.2873) (0.4735) (0.1424) (0.1421)
constant 0.0131∗∗ 0.0319 0.0005 0.0146∗∗∗ 0.0113∗∗ 0.0388 0.0110∗∗

(0.0056) (0.0307) (0.0089) (0.0054) (0.0049) (0.0402) (0.0044)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
J 0.8224 0.6559 0.8412 0.3352 0.8341 0.8662 0.5479

Test for H0 : π0 = π1 [p-value]
H1 : π0 �= π1 0.0733 0.3953 0.9213 0.0027 0.0120 0.3283 0.0077

Instrument Relevance [statistic]
Kleibergen LM 3.0762 0.7207 2.5929 14.3631∗∗ 13.1880∗∗∗ 0.8431 14.0275∗∗

Kleibergen F 0.8501 0.1727 0.6736 2.3757 4.6074 0.2021 3.6184

First-Stage F [statistic]
IN
t Δ lnYt 4.9143 8.2657 2.3331 3.5035 4.9143 8.2657 5.4355

IP
t Δ lnYt 6.5248 1.6090 2.0232 3.1363 6.5248 1.6090 4.5102

ri,t 1.4305 1.9025 17.7241 8.0870 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.4840 0.3400 0.4207 0.9191 0.7503 0.3719 0.7096
Heterosk. 0.0735 0.5789 0.1057 0.3269 0.0558 0.8659 0.1831
RESET 0.8846 0.9548 0.9972 0.7222 0.7987 0.9138 0.6072
Normality 0.0019 0.0657 0.1278 0.0033 0.0026 0.0595 0.0086

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.
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TABLE A.XIV

CUE-GMM ESTIMATIONS BASED ON SPECIFICATION (9)

Y YP S Y∪YP ∪S Y YP Y∪YP

Δ lnYt 1.0906 1.8909∗∗∗ 1.4093 2.7860∗∗∗ 6.6647∗ 2.1822∗∗∗ 2.5453∗∗∗

(1.0245) (0.6483) (1.0523) (0.6650) (3.6336) (0.5343) (0.5585)
IP
t Δ lnYt -0.0018 -1.5116∗ -0.1540 -3.3960∗∗∗ -9.5069 -1.8587∗∗ -2.4919∗∗∗

(1.5612) (0.8439) (1.5589) (0.9847) (5.8817) (0.7401) (0.8119)
ri,t -0.2745∗∗ -0.1761 -0.0644 -0.0884

(0.1334) (0.2873) (0.1424) (0.2056)
constant 0.0050 0.0131∗∗ 0.0005 0.0242∗∗∗ 0.0601 0.0113∗∗ 0.0154∗∗∗

(0.0087) (0.0056) (0.0089) (0.0075) (0.0378) (0.0049) (0.0055)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
J 0.0897 0.8224 0.8412 0.2451 0.3447 0.8341 0.2163

Test for H0 : πP
1 = 0 [p-value]

H1 : πP
1 > 0 0.5005 0.9616 0.5392 0.9996 0.9452 0.9931 0.9986

H1 : πP
1 < 0 0.4995 0.0384 0.4608 0.0004 0.0548 0.0069 0.0014

Instrument Relevance [statistic]
Kleibergen LM 2.2160 3.0762 2.5929 14.2694∗ 2.5767 13.1880∗∗∗ 14.4869∗∗

Kleibergen F 0.5532 0.8501 0.6736 2.0618 0.6476 4.6074 2.8022

First-Stage F [statistic]
Δ lnYt 6.0941 6.5296 2.7508 3.3167 6.0941 6.5296 4.5922
IP
t Δ lnYt 4.4742 6.5248 2.0232 2.7761 4.4742 6.5248 4.1137

ri,t 5.4029 1.4305 17.7241 6.5795 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.3113 0.4840 0.4207 0.3286 0.2129 0.7503 0.9091
Heterosk. 0.0757 0.0735 0.1057 0.6290 0.9790 0.0558 0.1562
RESET 0.6137 0.8846 0.9972 0.9952 0.8784 0.7987 0.8371
Normality 0.0112 0.0019 0.1278 0.0255 0.0008 0.0026 0.0009

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.
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TABLE A.XV

CUE-GMM ESTIMATIONS BASED ON SPECIFICATION (10)

Y YN S Y∪YN ∪S Y YN Y∪YN

IN
t Δ lnYt 0.0018 4.0102 0.1540 1.3613∗∗ 9.5069 5.5647 0.8667

(1.5612) (4.7182) (1.5589) (0.6747) (5.8817) (5.6922) (0.7321)
Δ lnYt 1.0888∗ -1.1415 1.2554∗∗ 0.5287 -2.8422 -1.9271 0.8528∗∗

(0.5836) (2.4852) (0.6143) (0.3263) (2.4296) (3.0453) (0.3636)
ri,t -0.2745∗∗ -0.1844 -0.0644 -0.1272

(0.1334) (0.4735) (0.1424) (0.1135)
constant 0.0050 0.0319 0.0005 0.0107∗∗ 0.0601 0.0388 0.0044

(0.0087) (0.0307) (0.0089) (0.0048) (0.0378) (0.0402) (0.0050)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
J 0.0897 0.6559 0.8412 0.2871 0.3447 0.8662 0.1595

Test for H0 : πN
1 = 0 [p-value]

H1 : πP
1 > 0 0.4995 0.1989 0.4608 0.0234 0.0548 0.1655 0.1198

H1 : πP
1 < 0 0.5005 0.8011 0.5392 0.9766 0.9452 0.8345 0.8802

Instrument Relevance [statistic]
Kleibergen LM 2.2160 0.7207 2.5929 10.4657 2.5767 0.8431 7.9015
Kleibergen F 0.5532 0.1727 0.6736 1.4053 0.6476 0.2021 1.4755

First-Stage F [statistic]
IN
t Δ lnYt 3.5748 8.2657 2.3331 3.5715 3.5748 8.2657 4.5866

Δ lnYt 6.0941 4.6120 2.7508 3.3924 6.0941 4.6120 4.0212
ri,t 5.4029 1.9025 17.7241 7.4566 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.3113 0.3400 0.4207 0.4879 0.2129 0.3719 0.4832
Heterosk. 0.0757 0.5789 0.1057 0.1575 0.9790 0.8659 0.0532
RESET 0.6137 0.9548 0.9972 0.7270 0.8784 0.9138 0.6301
Normality 0.0112 0.0657 0.1278 0.0029 0.0008 0.0595 0.0381

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.
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TABLE A.XVI

FULLER-K ESTIMATIONS BASED ON SPECIFICATION (8)

YP YN S YP ∪YN ∪S YP YN YP ∪YN

IN
t Δ lnYt 1.8155∗∗∗ 1.8456∗ 1.4182 1.8274∗∗∗ 2.0907∗∗∗ 2.3151∗∗ 1.8108∗∗∗

(0.6249) (0.9707) (0.9866) (0.4962) (0.5214) (1.0676) (0.4410)
IP
t Δ lnYt 0.3902 0.0350 1.1511∗ 0.4680 0.3449 -0.3985 0.3428

(0.3126) (1.1081) (0.6417) (0.3505) (0.3229) (1.2671) (0.3180)
ri,t -0.1867 -0.2427 -0.0672 -0.0697

(0.2807) (0.2179) (0.1606) (0.1279)
constant 0.0129∗∗ 0.0175 0.0016 0.0098∗ 0.0107∗∗ 0.0187 0.0095∗∗

(0.0057) (0.0137) (0.0089) (0.0053) (0.0048) (0.0163) (0.0045)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
Sargan 0.8022 0.4630 0.7792 0.3756 0.8308 0.5547 0.5616

Test for H0 : π0 = π1 [p-value]
H1 : π0 �= π1 0.0812 0.3730 0.8595 0.0654 0.0156 0.2345 0.0258

Instrument Relevance [statistic]
Anderson LM 6.4754∗∗ 0.7334 3.6755 19.1943∗∗∗ 15.9515∗∗∗ 0.8815 18.7059∗∗∗

Cragg-Donald 1.6475 0.1746 0.9048 2.4096 4.5777 0.2102 3.6296

First-Stage F [statistic]
IN
t Δ lnYt 4.6316 7.3166 2.5171 3.0923 4.6316 7.3166 4.8074

IP
t Δ lnYt 5.5812 1.7369 2.1434 2.6417 5.5812 1.7369 3.9720

ri,t 4.2762 5.8685 25.4837 12.0186 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.4586 0.9225 0.3801 0.5024 0.6979 0.6876 0.6049
Heterosk. 0.0758 0.0779 0.0701 0.1967 0.0557 0.1865 0.1806
RESET 0.8876 0.8816 0.9965 0.4113 0.7916 0.7502 0.5444
Normality 0.0019 0.0039 0.0877 0.0044 0.0040 0.0957 0.0082

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.
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TABLE A.XVII

FULLER-K ESTIMATIONS BASED ON SPECIFICATION (9)

Y YP S Y∪YP ∪S Y YP Y∪YP

Δ lnYt 1.2977 1.8155∗∗∗ 1.4182 1.8925∗∗∗ 2.9523 2.0907∗∗∗ 2.1669∗∗∗

(1.7886) (0.6249) (0.9866) (0.5732) (1.8639) (0.5214) (0.5883)
IP
t Δ lnYt -0.4273 -1.4253∗ -0.2671 -1.4689∗ -3.0471 -1.7458∗∗ -1.8388∗∗

(2.8415) (0.8173) (1.5088) (0.8634) (2.9688) (0.7221) (0.8609)
ri,t -0.2660 -0.1867 -0.0672 -0.1111

(0.1880) (0.2807) (0.1606) (0.1330)
constant 0.0078 0.0129∗∗ 0.0016 0.0114∗ 0.0185 0.0107∗∗ 0.0112∗∗

(0.0157) (0.0057) (0.0089) (0.0059) (0.0186) (0.0048) (0.0057)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
Sargan 0.0818 0.8022 0.7792 0.1933 0.1511 0.8308 0.2033

Test for H0 : πP
1 = 0 [p-value]

H1 : πP
1 > 0 0.5596 0.9576 0.5701 0.9537 0.8462 0.9911 0.9823

H1 : πP
1 < 0 0.5596 0.9576 0.5701 0.9537 0.8462 0.9911 0.9823

Instrument Relevance [statistic]
Anderson LM 2.9896 6.4754∗∗ 3.6755 18.9579∗∗ 3.6039 15.9515∗∗∗ 18.1368∗∗∗

Cragg-Donald 0.7301 1.6475 0.9048 2.1082 0.8864 4.5777 2.9565

First-Stage F [statistic]
Δ lnYt 5.6211 5.2361 2.7572 2.6441 5.6211 5.2361 3.7260
IP
t Δ lnYt 4.3765 5.5812 2.1434 2.3877 4.3765 5.5812 3.5220

ri,t 15.2726 4.2762 25.4837 10.7948 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.3307 0.4586 0.3801 0.5343 0.7165 0.6979 0.7512
Heterosk. 0.0508 0.0758 0.0701 0.1984 0.1534 0.0557 0.0781
RESET 0.5962 0.8876 0.9965 0.3436 0.5944 0.7916 0.7140
Normality 0.0045 0.0019 0.0877 0.0029 0.0001 0.0040 0.0028

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.
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TABLE A.XVIII

FULLER-K ESTIMATIONS BASED ON SPECIFICATION (10)

Y YN S Y∪YN ∪S Y YN Y∪YN

IN
t Δ lnYt 0.4273 1.8106 0.2671 0.8838 3.0471 2.7136 0.3885

(2.8415) (2.0322) (1.5088) (0.8924) (2.9688) (2.2825) (1.0814)
Δ lnYt 0.8704 0.0350 1.1511∗ 0.7009 -0.0948 -0.3985 0.9846∗

(1.0859) (1.1081) (0.6417) (0.4415) (1.1569) (1.2671) (0.5516)
ri,t -0.2660 -0.2427 -0.0672 -0.1302

(0.1880) (0.2179) (0.1606) (0.1262)
constant 0.0078 0.0175 0.0016 0.0078 0.0185 0.0187 0.0016

(0.0157) (0.0137) (0.0089) (0.0062) (0.0186) (0.0163) (0.0075)

T 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

Exogeneity Tests [p-value]
Sargan 0.0818 0.4630 0.7792 0.3816 0.1511 0.5547 0.2622

Test for H0 : πN
1 = 0 [p-value]

H1 : πP
1 > 0 0.4404 0.1877 0.4299 0.1624 0.1538 0.1189 0.3601

H1 : πP
1 < 0 0.5596 0.8123 0.5701 0.8376 0.8462 0.8811 0.6399

Instrument Relevance [statistic]
Anderson LM 2.9896 0.7334 3.6755 14.9146∗ 3.6039 0.8815 11.5084∗

Cragg-Donald 0.7301 0.1746 0.9048 1.5692 0.8864 0.2102 1.7175

First-Stage F [statistic]
IN
t Δ lnYt 3.7910 7.3166 2.5171 3.2287 3.7910 7.3166 4.0826

Δ lnYt 5.6211 4.6889 2.7572 2.8508 5.6211 4.6889 3.4590
ri,t 15.2726 5.8685 25.4837 11.4796 . . .

Log-Normality Tests [p-value]
Ser. Correl 0.3307 0.9225 0.3801 0.3632 0.7165 0.6876 0.3968
Heterosk. 0.0508 0.0779 0.0701 0.1738 0.1534 0.1865 0.0641
RESET 0.5962 0.8816 0.9965 0.6265 0.5944 0.7502 0.5647
Normality 0.0045 0.0039 0.0877 0.0059 0.0001 0.0957 0.0396

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table columns report the results for the instrument set on

its header. The variables in each set can be found on table IV.




