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This paper presents and discusses some methodological aspects of eoonometric 
techniques that have rerently been used to characterize the dynamic behavior 
of real GNP and its permanent and transitory componenls. Issues such as unit 
rools, stocha~tic trends, persistence of innovations, cyclical decompositions, 
structural models and spectral based tests are addressed. 

1. lntroduction,· 2. Unit roots: why do we care? 3. The Beveridge-Nelson 
decomposition; 4. Structural decomposition 0/ economic time series,· 5. The 
measurement 0/ persistence 0/ shoc/cs; 6. Permanent shoc/cs: /requency and 
intensity,· 7. The random walk null in the frequency doma in; 8. The business 
cycle in a multivariate framewor/c; 9. Concluding remarks. 

1. Introduction 

The issue of dçcomposing output fluctuations into permanent (trend) and 
transitory (cyc1es) components has received much attention in the recent 
literature. The traditional practice until the early 1980s was to fit a determi­
nistic polynomial trend to the data and interpret the residuais as cyc1es. 
However, the pathbreaking work of Nelson and Plosser (1982) revealed that 
such a procedure was not appropriate since real GNP - as well as several 
other macroeconomic variables - appears to have an autoregressive unit 
root, and this implies that this series is integrated (or difference stationary) 
and hence has a stochastic trend. 

Nonetheless, once a stochastic trend is allowed myriad possible decom­
positions can be obtained depending on the process attributed to the trend 
component. A wide field of research was then opened and many interesting 
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(oftentimes conflicting) results wcre gotten using diffcrent econometric 
techniques. In this context, severa I questions arose. Are there business 
cycles? lf so, how large is the cyclical component in GNP? How volatile 
is the stochastic trençl? What is the role played by supply and demand 
disturbances in output fluctuations? How persistent are economic 
shocks? This paper's aim is to discuss the methodological aspects invol­
ved in some of the econometric techniques used to provide these ques­
tions with answers. 

The questions posed above are important both theoretically and empiri­
cally. Macroeconomic theory has been primarily concerned with deviations 
of GNP from its trend, and the extent to which such deviations occur depends 
primarily on the nature of the trend component. In a more general context 
economic theory tries to place restrictions onthe dynamic interrelations of 
severa I variables, and misspecification of the trend components willlead to 
incorrect inferences about the validity of different theories (Watson, 1986. 
p.50). On the empirical side, it has been shown by Nelson and Kang 
(1981,1984) and Durlauf and Phillips (1988) that fitting a deterministic 
polynomial trend to the data when these are generated by ao integrated 
process introduces several spurious patterns in the detrended data. The 
questions above also have important policy implications since stabilization 
policies are designed to 'stabilize' short-run f1uctuations, and again the 
extent to which such f1uctuations occur is closely related to the dynamic 
behavior of the long-run component. 

In particular, a puzzling question regarding unit roots in GNP is: why do 
we care? This question can be answered on different leveis. To a policyma­
ker the answer could be: " Because the policy implications are different". To 
a macroeconomist, it could be answered that "there are theoretical implica­
tions on several theories and models such as on the consumption theories" 
(e.g., Deaton, 1991). Finally, an econometrician would besatisfied with the 
answer: "Because the asymptotics are different." 

The remainder of the paper is organized as follows. The next section 
discusses some implications of unit roots in macroeconomic time series. 
Scction 3 presents the Beveridge-Nelson decomposition of GNP into per­
manent and cyc1ical components. Ao alternative decomposition based on 
structural models is discussed in Section 4. Section 5 covers the controver­
sial issue of measurement of persistence of innovations. The following 
section bricfly summarizes some implications of large and infrequent 
shocks, as opposed to small and recurrent innovations. Section 7 turns to 
the frequency domain and presents some spectral based tests of the random 
walk null. Some strong results recent1y obtained using such tests arc also 
covered. Some multivariate approaches to the characterization of output 
movements are discussed in Section 8. Finally, conc1uding remarks are 
given in the last section. 
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2. Unit roots: why do we cure? 

As discusscd in thc Introduction, the traditional view de com poses output 
fluctuations into a dctcrministic trend and cyc1es which follow a stationary 
stochastic proccss around the trend. Still according to this view, real factors 
such as tcchnology, capital accumulation and population growth determine 
the growth in the trend col1'l:ponent, whereas monetary disturbanccs are the 
source of business cyc1es. 

However, sincc the influential work of Nelson and Plosser (1982), it has 
been argued that the secular component of GNP is best charactcrizcd by a 
stochastic rather than deterministic trend. These authors have shown that a 
time series has a stochastic trend if and only if it has a unit root in its 
autoregressive representation. Thus, testing for the presence of a unit root 
is equivalent to testing for the presence of a stochastic trend in the series. 

Thc presence of a stochastic trend in GNP has far-reaching implications. 
The most important one relates to the persistence of economic shocks in the 
long-run. A deterministic trend implies that innovations are temporary, in 
the sense that their effects are fclt only during the cyc1e. Put different1y, 
innovations have only short-run effects. On the other hand, a stochastic trend 
implies that economic shocks are to some extent persistent in the sense that 
they have effects on the long-run leveI of output. 

The key issue in the distinction between deterministic and stochastic 
trends is whether GNP is stationary, i.e., whether its mean is time invariant 
and its variance is boundend and does not change over time (Cuthbertson, 
Hall and Taylor, 1992, p.129-30). 

More formally, let YI be the naturallogarithm of real GNP and assume 
thaty, follows an AR(I) precess given by 

where fI is second-ordcr white noise. 1 Thcn, it follows that 

and 

00 

E[yt)- L d E[ft_j)-O, 
j-O 

1 For a definition of seoond-order white noise processes, see Bloomfield (1991, p.153). 
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Hence, Y, is stationary ir and only ir I a I < 1. Otherwise, var [. ] and cov [.] 
would grow without bound. 

Moving to a slightly more general, let Y, grow over time according to 

Y, = !l + a, + Er 

This is in essence a deterministic trend model. Again, stationarity requires 
I a I < 1. Note that the variance or Y, is bounded by the variance of E/. In 
economic terms this means that uncertainty is bounded even in the long-run. 

Considcr now the simplest integrated process: the random walk (whh 
drift). This process is givcn by 

Y, = !l + YI-l + E, , (1) 

where E, is sccond-ordcr white noise. Note the presence of an autoregres­
sive unit root on the coefficient or y/-l. Equation (1) can be rewritten as 

I 

Y, - Yo + !lI + L Ej' 
j-l 

(2) 

where Yo is the starting value of {v,}. It is clear from (2) that innovations are 
full persistent, since a random walk is nothing more than ao accumulation 
of disturbances. Note also that the variance of Y, grows without bound; this 
is because Y, is not stationary, although its first difference Il.y, is. 

The class of deterministic trend modcls is called "trend sationary" and 
the class of stochastic trend models is called "difference stationary". As 
shown above, the former implies a degree of persistence of shocks of zero, 
while the latter implies a positive degree of persistence of innovations. 

Another important implication of the presence of a stochastic trend in 
GNP is that at least part of the short-run fluctuations are due to real factors. 
These factores are more important in this framework since they account for 
some of the short-run oscillations as well as the long-run fluctuations in 
GNP. Here a word of caution is in order. It is common practice to associate 
persistent shocks to movements in aggregate supply, whereas mean-rever­
ting shocks are vicwed as movements in aggregate demand, as, for instance, 
in Blanchard and Fischer (1989. p.14-5). However, this is a misleading and 
slippery view.2 As notcd by Plosser (1989. p.57) in the context of the 

2 I thank a referee for bringing this point to my attention. 
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so-called real business cycles models, real shocks do not easil y translate into 
either demand or supply disturbances. 

A final comment regards the test of the unit root hypothesis, i.e., the test 
of the presence of a stochastic trend. 10e most used test in the Iiterature is 
the (augmented) Dickey-Fuller (1979) test. 10is carried out by estimating 
the equation 

/c 

Y,-YO+PY'-l + ~ yjAy,_j+u, 
j-i 

by ordinary least squares (OLS) and testing the hypothesis that 
de{ 

t - (p - l)1se (p) equaIs zero using the criticai values in Fuller (1976, 
p.373). 10at is, the null hypothesis can be tested using the statistic 

A 

where s is the standard error of the regression. Failing to reject the null 
is equivalent to failing to reject the presence of a unit root oi stochastic 
trend. 

A problem with this approach is that it requires the disturbance term to 
be Li.d. In order to extend this test to less restrictive settings, Phillips and 
Perron (1988) have proposed the following modification of the test statistic 
given above: 

where, under the nuIl hypothesis, ~ is a consistent estimator of lim 

T-1 L E [ El] and Sh is a consistent estimator of tim T-1 E [ (L E, )2 ]. 

The use of this teste statistic extends the unit root test to the general case of 
weakly dependent and heterogeneously distributed data. A nice feature of this 
test is that the criticaI values tabulated by Fuller (1976, p.373) are still valid.3 

3 See also Perron (1988) and Phillips (1987). For Bayesian tests of the unit root hypothesis, 
see Koop (1991,1992). 
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An even more serious problem with the Dickey-Fuller test is that it 
assumes that the order of autoregression (k) is known to the investigator, 
and yet this does not seem to be a realistic assumption in practice. Hall 
(1991) has derived the limiting distribution of this test K is selected using 
a data based method that is asymptotically independent of the test 
statistic. The main result his paper conveys is that the limiting distribu­
tion of the unit root test is not affected when one uses an information 
criterion to choose the order of the autoregression. This result deserves 
to be highlighted since it is very important for practical applications. See 
also Hall (1992). 

It is also possible to design tests for the nuH hypothesis of stationarity 
against the alternative of a unit root; see, e.g., Kahn and Ogaki (199:?) and 
Kwiatkoswki et alii (1992). 

It should be remarked, however, that both tests of unit roots and tests of 
stationarity may have low power. That is, the powers of integration tests 
against plausible trend stationary altematives can be very low, as can the 
powers of tests of the null hypothesis of trend stationarity against integrated 
alternatives. See DeJong et alii (1992) for further details. 

3. The Beveridge-Nelson decomposition 

A difficulty involved in trend/cycles decompositions once a stochastic 
trend is assumed is that one obtains a different decomposition for each 
stochastic process attributed to the trend component. A very useful de com­
position is due to Beveridge and Nelson (1981). This decomposition is based 
on tlle assumption that the innovations in both components are perfectly 
correlated. 

def 

Let z, == y, - y, _ 1 and assume thet z, is covariance stationary. Then, its 
Wold representation (Wold, 1938) is 

00 

Zt= Il + 2}"j ft - j, ~. 1, 
j-o 

(3) 

where Il is the long-run growth rate4 and ~ is second-orderwhite noise. The 
permanent or trend component is given by 

(4) 

4 This is beca use Yt is in logs. 
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The trend component in (4) follows a drifted random walk. To see this, 
take the first difference of Y f 

(5) 

where B is lhe backward shift operator. Using (3), equation (5) can be 
simplificd to 

or 

p p-
Y I - fl + Y l-I + EI , 

(6) 

whcre E/" ~ Àj E/ Equation (6) establishes that the trend in GNP follows 
(

00 1 
j-o 

a drifted ra dom walk. Now let "i,(k) be the conditional expectation of Z,+Ic 

at time t. We can then rewrite (4) as 

Y f -Yt + limj± Zt(k) - kflj. 
k-ao i-I 

That is, lhe trend componenl is lhe sum of the current observation and ali 
forecaslable movcments in lhe series apart the drift. It is the c1ear that the 
cyclical componcnt (~) is givcn by 

or 
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(7) 

Thus, any integrated process can be decomposed into a trend which 
follows a drifted random walk [eq.( 4)] and a cyclical component 
[eq.(7) ] with the innovations to both components being perfect1y cor­
related. It is important to mention that the assumption that shocks to 
both components are perfect1y correlated is essential, given that not ali 
integrated processes can be decomposed into a random walk compo­
nent and an uncorrelated cyclical component, as shown by Watson 
(1986). One should note that there are no cyc1es when the series itself 
(z,) follows a random walk with drift. Some other decompositions, as 
the one in Definition 2.1 of Quah's (1992) paper, do not allow the 
cyc1ical component to have variance zero. 

A further issue in this context is how to compute the Beveridge-Nel­
son decomposition. Different strategies have been suggested by Cud­
dington and Winters (1987), Miller (1988) and Newbold (1990). We 
will focus on Newbold's approach, since it is "exact" in the sence that 
it does not require any truncation. His main result can be described as 
follows. Let z, be represented by the ARMA (p,q) model 

(8) 

where E, is second-order white noise and the roots of the polynomials 
cj>(B) and 8(B) Iie outside the unit circ1e. Then, 

where z; - z, - 11. The trend component is lhen obtained by summing y, and y,. 

4. Structural decomposition of economic times series 

The Beveridge-Nelson decomposition discussed in the last section is 
based on an ARIMA model building procedure, where one selects a model 
fram a broa der c1ass based on the properties of the data. The structural 
decomposition approach, conversely, aims at decomposing the time series 
into unobservable components with directeconomic meaning, such as trend, 
cyc1es and irregular.!! ' 
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Following Harvey (1985), consider the following cIass ofmodels: 

(9) 

where 1-1, is a trend, <p, is a cycIe and E, is an irregular component. This last 
component is second-order white noise and our goal is to find suitable 
characterizations for 1-1, and I,. 

The cyclical component can enter the model additively as a separate 
componcnt [as in eq.(9)] or can be specified into the trend component. The 
latter specification is known as "cyclical trend" and is given by 

YI- I-1/+EI (10) 

and 

1-1/-1-1/-1 +Y-1 +<P/-1 +v" (11) 

where 

YI-Yy-1 +v1 (12) 

and v, and v, are uncorrelated second-order white noises. 
The specification in (10)-(12) is still toa general since no closed-form 

specification for the cycIical component is provided. A commonly used 
specification is given by 

( !/) _ p ( ~s A sin A) (!t-1) (~) , 
<PI - S10 A cosA <P,-1 .." 

(13) 

where .." and fi, are uncorrelated second-order white noises whith variances 
o~ and ~, respectively. The parameter A(O $ A $ Jt) determines the fre­
quency of lhe cycIe and the para meter p is a damping factor on the cycIe 
amplitude. 

It follows from (13) thal 

1- P cos A . B ) "'1 + ( p sin A . B )fi, (14) 
<PI - 1 - 2p cos A . B + p2 . JJ2 

S See Aoki (1990) and Harvey (1985,1989). 
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The implication of (14 is that '1', is constrained to follow an ARMA(2,1) 
processo When o~ - O and O < À. < 1, equation (14) implies an AR­
MA(2,O) model for the cyc1ical component with the autoregressive operator 
having complex roots. 

The parameter estimation of the model presented above can be carried 
out by writing the model in state space form and then using the Kalman filter 
(Harvey, 1989). For an analysis of diagnostic checking in structural models, 
see Harvey and Koopman (1992). For a definition of structural models witb 
ARCH disturbances, see Harvey, Ruiz and Sentana (1992). 

Although this is a very appealing tecbnique given the económic meaning 
of the "strucural components", it faces severallimitations. First, it restricts 
the c1ass of ARlMA models and their respective param ater spaces on an 
entirely a priori basis (Newbold, 1991). Secondly, as shown by Newbold 
and Agiakloglou (1991), structural models can lead to implications on the 
unobservable components quite different from the ones obtained using the 
more conserva tive ARlMA model buiding procedure. 

s. 'file measurement of persistence of sbocks 

It was shows in the last section that any time series with a unit root in its 
autoregressive representation can be decomposed into a random walk 
component (trend) and a stationary component (cyc1es). However, the 
random walk may bave arbitrárily small variance.6 Therefore, it is important 
to provide a measure of tbe size of the random walk component, which is 
done by measuring tbe degree of persistence of innovations in long-run 
GNP. Two measures will be discussed in this section. 

Tbe first measure is called the cumu/ative impu/se response function and 
was proposed by Campbell and Mankiw (1987), wbo bave built upon 
previous work by Box and lenkins (1976). Let z, be represented by (8). Then, 

( 1 - B ) (Zt - J.l ) -A (B) ft, 

whereA (B) = [cp (B)] .19(B). It follows from the stationarity of z, that 

def co 

A (1) ~ ~ A i < 00. 

i-o 

Since y, is the logarithm ofGNP andz, is the first difference ofy" tbenA(I) 
is a measure of the long-run persistence of a one percent sbock7• 

6 In this case, unit root tests have arbitrarily low power in tinite samples. See Cochrane (1991a). 

7 Recall that the difference of the logarithm of a series is (approximately) its rate of growth 
between oonsecutive periods. 
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This is a very intuitive measure and it has been widely used in the recent 
literature. Nonetheless, it faces severallimitations. Tbe most important of 
alI is that different models may imply different degrees of long-run pe..rsis­
tence, and yet there is no widely agreed upon criterion for selecting a model 
from a c1ass of competing models. Tbere are severa I criteria for model 
selection such as AlC (Akaike, 1974), AlCC (Hurvich and Tsai, 1989), BIC 
(Schwarz, 1978; Rissanen, 1978) and HQ (Hannan and Quinn, 1979), and 
yet there is no consensus to which criterion should be used. Furthermore, as 
noted by Newbold, Agiakloglou and Miller (1992a), these criteria were 
designed to find a parsimonious representation for the series which means 
thatp and q may not be sufficiently large to capture its long-run dynamics.8 

There is also the problem of sensitivity of the results to small parameter 
changes. A simple example will make this point c1ear. Consider two ARMA 
(1,1) models, the first with cp}-0.9 and 91 ... 0.8, and the second 

cp} - 0.8 and 91 - 0.9. For the first model, A(I) = 2.0 and for the second 
model A(I) = 0.5. 

Another problem in computing the cumulative impulse response function 
relates to the estimation of the parameters in the selected ARIMA model. 
This estimation can be carried out using different methods. In an extensive 
simulation experiment, Ansley and Newbold (1980) have compared the 
performance of three competiqg methods, namely: exact maximum likel\­
hood, exact least squares, and conditionalleast squares. Maximum Iikeli­
hood estimates were obtained by maximizing the concentrated Iikelihood 
function using Ansley's (1979) algorithm. Exact least squares estimation 
was carried out by using one iteration and truncating an infinite sumo Finally, 
conditional least squares estimates were obtained by using the procedure 
suggested in Box and Jenkin (1976, p.211). 

The three estimators described above are asymptotically equivalent in the 
sense that the difference between any of them vanishes in probability as the 
sample size tends to infinity. However, Ansley and Newbold's (1980) 
simulation results sh0'r that these estimators can give different estimates 
for mixed models in finite samples. In particular, this problem is more severe 
when the autoregressive operators are dose to the stationarity boundary 
and/or there is near-cancellation of AR and MA parameters. 

Based on their results, Ansley and Newbold (1980) recommend the use 
of the maximum Iikelihood estimator, since the possible losses are very 
small, whereas the possible gains may be large. According to them (p.181), 
"it seems Iikely that practical situations arise in which one of other of the 
least squares estimators performed so poorly that its use would be regarded 
as undesirable." 

8 For a thorough discussion of model selection criteria, see Choi (1992). For a Monte Carlo 
comparison of different criteria, see MiIIs and Prasad (1992). 
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It follows from the discussion above that it may be the case that two, 
econometricians using the same data set, estimating the same ARIMA 
model, but using different econometric programs arrive at different estima­
tes for A(1). This point was forcefully made by Newbold, Agiakloglou and 
Miller (1992b). These authors have used severa I diferent packages to 
analyze five series, including real GNP.9 They have shown that different 
econometric programs can lead to different para meter estimates for both 
seasonal and non-seasonal series. 

Ao altemative and nonparametric measure, known as the variance ratio, 
was proposed by Cochrane (1988). This measure is given by 

(15) 

It is easily shown that if y, is trend-reverting, then lim k - 00 VA: - O, and 
if y, evolves as a random walk, then VA:-1 for alllags. 

The variance ratio in (15) can be estimated as follows. Define 

and 

def T 
"2 T ~ " 2 
a k - k ( T _ k ) ( T _ k + 1 ) L, (y, - y, - k -k Il) . 

'-k 
Then, an estimator for the variance ratio is 

9 They used the following packages: SPSS, SAS, SHAZAM, STATGRAPHICS, BMDP, 
AUTOBOX, MINITAB, RATS, TSP, SYSTAT and S-PLUS. It should be remarked, 
however, that S-PLUS is not exactly a software; it is more a high leveI programming language. 
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Moreover, it was shown by Lo and MacKinlay (1988,1989) that 

der fi. V 3k V.- VT(V.-I) '2 (2k -I) (k-I) 

converges in distribution to a standard normal. This is a very useful result 
since it enables one to build confidence intervals for the estimated variance 
ratio. 

For a criticism of the variance ratio as a tool for distinguishing between 
trend stationary and difference stationary processes, the reader is referred 
to Christiano and Einchenbaum (1989). In short, these authors argue that 
the standard errors for the estimated variance ratio are too large,lO and 
that it is not possible to be sure about the direction of the bias of this 
measure. 

The two measures presented above are however closely related. Let R2 
be the fraction of variance of y, - y,_ 1 that is predictable from the past 
behavior of the series. Then, the following relation holds: 

R2 is usually approximated by the square of the first order coefficient of 
autoconelation. 

The ma in puzzle in the measurement of persistence of innovations relates to 
the difference in the results obtained from ARlMA (i.e., cumulative impulse 
response function) and structural models. Campbell and Mankiw found a 
degree of persistence of innovations greater than one for postwar quarterly U .S. 
real GNP. However, studies based on structural models (e.g., Clark, 1987; 
Watson, 1986) have conversely found lhat such a degree is less lhan one. 

This puzzle has recently been solved by Uppi and Reichlin (1992), who have 
shoWll that it is a mathematical consequence of the defmition of structural 
models that lhe degree of persistence of innovations is constrained to the 
interval [0,1 ]. Their result can be stated more precisely as follows. Let y, be 
a difference stationary random variable and consider the structural model 
given in (9) where var [cp.] > O and J.lt = y + J.lt.l + vt (var [VI) > O). Then, 
lhe assumption that cov [z" CP,-k] = O Vk i! O implies thatA (1) < 1. 11 

10 They considered the standard errors given by Priestley (1981). 

11 Note Ihat there is a typograpbical error in the equalion defining the trend component in the 
statement of the theorem on page 91 of Lippi and Reichlin's (1992) paper. The way tbis 
component is defined implies that it is a white noise, rather than a random walk. 
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Therefore, the use of structural models in the context of measuring 
persistence of innovations constrains a priori the degree of this persistence, 
and one should bear that in mind. 

6. Permanent shocks: frequency and intenslty 

Recent work has suggested that the issue of persistence of innovations can 
be analyzed in a slight1y different setting. According to this work, persis­
tence arises from large and infrequent shocks, rather than from small and 
frequent shocks. Perron (1989) used dummy variables to isolate the effects 
of some large shocks (mainly the Great Depression), and showed that it is 
possible to reject the null of a unit root once the effects of such shocks are 
removed. His analysis then suggests that a deterministic trend with a few 
discontinuities caused by some large and infrequent shocks together with 
stationary cyc1es best characterize the oscillations and fluctuations in output. 
For other applications of this approach, see Duck (1992), Inwood and 
Stengos (1991) and Serletis (1992). However, this approach does not seem 
to be robust to the measure of real economic activity and the number of 
lagged differenced residuais (Davis and Kanago, 1992). A more serious 
Iimitation of this kind of analysis is that since dummy variables are chosen 
in an ex post way, the ex ante probability assessed to future discontinuities 
equals zero. A more general framework was proposed by Balke and Fomby 
(1991a).12 Consider the following model: 

where the roots of S ( B ) Iie outside the unit circle and 

Assume that E, is second-order white noise and I, is a Bernoulli trial, 
i.e., Pr (/,-l)-Ô andPr (I, - O) - 1 - Ô. In this setting, a large and persistent 
shock occurs with probability Ô. We then have that var~,]-ôa~. 

Note that this model has the deterministic trend m<><%:l ( Ô - O ), the 
random walk trend model ( Ô - 1 ), and the discontinuols deterministic 
trend model (O < Ô < 1) as special cases. 

It is wel known that the Dickey-Fuller test discussed in Section 2 is 
asymptotically consistent regardless ofthe variance of the shocks, provided 
that this variance is strictly positive. However, the·simulatioós m Balke and 
Fomby (1991a) show that when 0< Ô < 1 the Dickey-Fuller test is biased 

12 See also 8alke and Fomby (l991b,1991c). 
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towards the rejection ofthe null, i.e., it rejects the nuH ofa unitroot too often 
even when the series does have an autoregressive unit root. 

7. The random walk null in the frequency domain 

As mentioned earlier, the issue of persistence of innovations in real GNP is 
important because it is an indication of the size of its random walk compo­
nent. This is in turo relevant beca use it helps in identifying the role of real 
shocks in output fluctuations. 

It is well known that the presence of an autoregressive unit root in the 
series is equivalent to the presence of a stochastic trend. It is possible, 
however, that there are no cycles and hence the series and the stochastic 
trend coincide. This hypothesis can be tested changing the null from "the 
series has a unit root" "the series is a drifted random walk". This approach 
was followed by Durlauf (1989,1991). This section wiI1 discuss some 
spectral based tests used to test such a null. 

If y, follows a random walk, the z, is an i.i.d. disturbance with mean Il, 
the drift. Let fz be the spectral density of z and O:s; À :s; x. Then, the 
normalized spectral distributioll 

).. 

der 2f fz (w) d (w) 
M (À) _ ----'0.0 ___ _ 

Z var (z) 

should be a diagonalline. Now define the following random function 

der 7tI ( Iz{w) 1) 
Ur (t) - mIa v~r(z) - 2x d w, 

(16) 

for O :s; t :s; 1, and where I/... w) is the periodogram of z,. The random function 
defined in (16) computes the deviations ofthe (periodogram-based) spectral 
distribution function from a diagonalline. 

Under certa in regularity conditions, UT (t) converges weakly to a Brow­
nian bridge, that is 

w 

Ur(t) -B (t), 

where B(t) is Brownian bridge.13 This result establishes that UT (I) has 
asymptotic distribution N(O,t-f2 ), and it is the basis for the tests described 
below. 
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It is now possible to define two test statistics based on the random 
function U~t) given in (16). The Cramér-Von Mises statistic is given by 

(17) 

and the Kolmogorov-Smirnov statistic is defined as 

der 

S ~=suPIIUr(t)l. 
(18) 

Os t si 

Another useful spectral based test is Fisher's testo Its nuH is that 
z, is a Gaussian white noise, and it enables one to test for the presence 
of hidden periodicities with unspecified frequency. The test statistic 
is defined as 

f der max O < j < q + 1 I r ( W j) 
S r= 

-1 '" q (' ) q .LJj-l I r wJ 

( 
T - 1 ) where q = -2- .14 It was shown by Fisher (1929) that 

j 

Pr ( S f ~a ) - .L ( -1 ) j - 1 ( ? ) ( 1 - ia ) q - 1 

,- 1 

Durlauf (1991) used spectral tests based on the statistics given in (17) 
and(18) to tcst the random walk nuH forV.S. real GNP from 1870 to 1989.15 

He showcd that it is possiblc to reject this null at the usual significance leveis. 
However, it is not possible to reject the same null for the subsamples 
1870-1929 and 1947-89. Thcse rcsults suggest that the atypical period from 
1930 to 1946 may be causing the rejection of the drifted random walk 
hypothesis for the whole sample. 

Durlauf's (1991) results have strong implications. First, in the atypical 

13 See the appendix for a definition of a Brownian bridge. For a a definition of weak 
convergence, see Dhrymes (1989, chapter 4) and Pollard (1984). 

14 See Brockwell and Davis (1991, chapter 10) for more details. 

15 See also Durlauf (1989). 
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period from the Great Depression to World War 11 GNP had a different 
stochastic characterization than in the rest of the series. As shown before, 
deviations of the series from its random walk component can be viewed as 
business cycles. In this sense, the results obtained by this aulhor imply lhat 
- except for this atypical period - there is no evidence of business cycles in 
the United States. That is, alI fluctuations and oscillations in GNP have been 
caused by the dynamic accumulation of persistent shocks. 

Furtherrnore, it has been argued that it is not possible to identify a unit 
root since there are severa I caveats involved in testing lhis hypothesis (cf., 
Christiano and Einchenbaum, 1989; Cochrane, 1991a). However, identi­
fying a random walk in the leveI of series is certainly a stronger result lhan 
identifying a unit autoregressive root, since lhe forrner case implies the 
latter. Therefore, Durlauf's results show that on certain occasions it is 
reasonably safe to argue that the nature of the nonstationarity in GNP is 
stochastic. 

8. The business cycle in a multivariate framework 

The discussion has focused so far on the univariate properties of real GNP. 
However, it is possible to develop multivariate approaches lhat alIow one 
to characterize the dynamic pattern of output movements. A useful concept 
to start with is the concept of cointegration. Suppose thatY1, and h, are 1(1), 
i.e., integrated for order one. Assume further that lhere exists a linear 
combination of these series 

m, - <lo + aly + a2Y2, 
I. 

which is both 1(0) and has zero mean. Then, YlI and Y2t are said to be 
cointegrated.16 

The concept of cointegration can be useful in characterizing persistent 
. movements in GNP. Suppose one is wiIling to assume that persistent 

innovations are due to technology shifts. Since new technologies migrate 
quite easily among countries, one would expect per capita output in deve­
loped countries to be cointegrated. The underlying idea is that per capita 
GNP in two developed countries cannot drift apart in the long-run as a result 
of tecnological innovations, and hence long-run convergence is expected. 
This point was made by Durlauf (1989); see also Campbell and Mankiw 
(1989). However, as pointed out by Christopher Sims in his comments on 
Durlauf's paper, since countries are differently endowed shocks in techno­
logy will have persistently different effects on different countries. 

16 See Engle and Granger (1987). A useful survey is Muscatelli and Hurn (1992). 
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Another important concept in the muItivariate framework is the concept 
of common features. A feature is said to be common to a multivariate data 
set if a linear combination of the series no longer has the feature. It is clear 
that this is a generalization of cointegration since the "feature" is not 
restricted to be the order of integration. Tests for common features were 
developed by Engle and Kozicki (1991). Here, an important feature to be 
considered is dependence, and the concept of codependence can be intro­
duced as an indicator of comovement among stationary time series, as in 
Vahid and Engle (1991). A strong form of codependence is the serial 
corre/ation commonfeature, as in Engle and Kozicki (1991), in which case 
a linear combin"ation of some stationary series eliminates ali correlation with 
the past and is unpredictable with respect to the Uoint) past information set. 
In this context, Vahid and Engle (1991) showed that "a common serial 
correlation feature among the first differences of a set of cointegrated 1(1) 
variables implies that the remainders after removing their common trends 
from their leveis, i.e., their cycles, are also common" (p. 2). The authors 
have also presented a test for common cycles and showed how to estimate 
the number of common cycles given the existence of common trends. Engle 
and Issler (1992) applied these techniques to per capital sectoral real V.S. 
GNP. The results in their paper show that the cyclical fluctuations across 
sectors are fairly similar whilst the movements in the stochastic trends are 
quite different. Such a result is in agreement with Burns and Mitchell's 
(1946) classic book, since these authors worked under the betief that many 
economic time series are driven by a common cycle. An interesting result 
in Engle and Issler's (1992) paper \S that cycles and trends are negatively 
correlated. This implies that temporary shocks to some sectors may have 
persistent effects on other sectors which breaks down the usual short and 
long-run dichotomy. A somewhat different approach was pursued by Clark 
(1992). He has studied the role of regional fluctuations in the business cycle 
in the Vnited States. His results show that even after controlling for industry 
mix effects there are significant region-specific fluctuations in output. 
Indeed, he has shown that approximately "40% of the variance of the 
cyclical innovation in the average's region employment growth rate is 
particular to the region. Moreover, there is evidence that, over time, these 
shocks tend to propagate across regions" (p.1). 

A different multivariate framework was adopted by Cochrane (1991b). 
He used consumption to decompose output movements in to trend and 
cycles. His analysis goes as follows. Since consumption is nearly a random 
walk and the consumption GNP ratio is stable over long time spans,17 then "a 
high consumption/GNP ratio signals that GNP must rise in the future, to 
reestablish the ratio, and today's consumption is nearly today's forecast of ~he 
long-run 'trend' ind GNP" (p.2). The author's results show that innovations in 

17. This because consumption and GNP are cointegrated. 
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GNP that do not change consumption are almost entirely transitory, whe­
reas shocks that induce changes in consumption are persistent. In this 
framework,one can use consumption as a good approximation to the trend 
in GNP since it provides a measure of consummer's expectations of 
long-run GNP. 

King et aI/i (1991) used the long-run restriction of the class of real 
business cycles models that productivity shocks are shocks to the com­
mon stochastic trend in output, investment and consumption to shed some 
light on the sources of the business cycle. These authors have shown that, 
when nominal variables are introduced, productivity shocks account for 
less that half of the business cycle. This result casts some doubt on the 
claim that productivity shocks are the primary source frequency oscilla­
tions in output. 

9. Concluding remarks 

The purpose of this paper was to present and discuss severa I techniques 
that have been used in the recent literature to éharacterize the dynamic 
behavior of real GNP. The analysis reveals that the results obtained may 
be largely sensitive to the choice of the technique, and that there are 
severa I caveats in modeling GNP. Despite ali controversies, however, it 
has become a stylized fact that economic shocks to output are to some 
extent persistent in the long-run. Furthermore, the presence of a stochas­
tic trend in GNP seems to suggest that real factors have accounted for at 
least part of the short-run f1uctuations in addition to the long-run move­
ments in output. 

Appendix: Brownian motion 

A Brownian motion (or Wiener process) is a stochastic process 
satisfying the following set of conditions: (i)Bo = O; ( i i ) {B, : t Õ!: O} is 
a Gaussian process; and (iii) For any 1 Õ!: s Õ!: O, B, - Bs has mean zero 
and varianct 1 -s. 
_ If B, is a Brownian motion, then the process defined as 
B, = B, - t Bl' for Os t s 1, is a Brownian bridge. It follows fram the 
definition of Brownian motion that a Brownian bridge has distribu­
tion N(O, 1 - (2). It has a normal distribution beca use it is a linear 
combination of nOLmally distributed variables. To see that it has mean 
zero, not that E [B,] = E [~] - tE [~] = O - tO ao O. Finally, it has va­
riance t-t 2 because var [B,] = E [B, J2 = E [BtF - 2tE [B,Bd + t2E 
[Bd 2 = t - 2t 2 + t 2 = t - 1 2• 

For more details on Brownian motion, see Hida (1980). 
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Resumo 

o presente artigo apresenta e discute vários aspectos metodológicos de 
técnicas econométricas que têm sido usadas recentemente para caracterizar 
o padrão dinâmico do PNB real e suas componentes permanente e transitó­
ria. Abordam-se assuntos como raízes unitárias, tendências estocásticas, 
persistência de inovações, decomposições cíclicas, modelos estruturais e 
testes baseados em análise espectral. 
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