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This paper addresses the issue of measuring the degree of inertia
in inflation in the presence of potential ‘inliers’. It shows that by
using robust unit root tests one reaches the same inference on the
order of integration of the series as what is revealed by the modified
procedure proposed by Cati et al. (1999). The results also suggest
that, contrary to previous findings, the degree of inertia in inflation
is rather small. Finally, the paper presents simulation results on
the finite–sample behavior of unit root tests and of a persistence
measure when the data contain inliers.

Este artigo analisa a mensuração do grau de inércia na inflação na
presença de potenciais inliers. O artigo mostra que testes robustos
de ráızes unitárias conduzem à mesma inferência sobre a ordem de
integração da série do que o procedimento modificado proposto por
Cati et al. (1999). Os resultados sugerem que o grau de inércia na
inflação brasileira é pequeno. Por fim, o artigo apresenta resultados
de simulação de Monte Carlo sobre o desempenho em amostras
finitas de testes de ráızes unitárias e de uma medida de persistência
quando os dados contêm inliers.
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1. The Issue

It has been argued that some inflationary processes contain an ‘inertial com-
ponent’ thus implying that, in the absence of economic shocks, inflation displays a
tendency to reproduce itself from one period to the next.1 The fully inertial case
corresponds to a random walk in inflation, that is, yt = yt−1 +ut, where yt denotes
the inflation rate at time t and ut is a white noise disturbance with mean 0 and
variance σ2. A 1% shock to inflation then becomes fully persistent in the sense
that it changes one’s long-run forecast of the inflation rate by exactly 1%. This
can be easily seen when the process is rewritten, under the assumption that the
process starts at zero (i.e., y0 = 0), as yt =

∑t
j=1 uj . That is, the inflation rate

at time t is nothing more than the accumulation of past innovations. When ut is
not a white noise disturbance but has some stationary and invertible ARMA(p, q)
representation, the degree of long–run persistence is not necessarily equal to 1,
and can take any value in the interval (0,∞). Here, inflation displays some inertia
which can be quite small (say, close to zero) or large (say, greater than 1). When
yt is integrated of order zero instead, shocks to inflation have no long-run effects
and there is no inertia in inflation.

Brazil has often been cited as the prime example of a country with a large
inertial component in inflation. Simonsen (1988:260), for instance, analyzing
the Brazilian experience writes that “anti–inflationary policies in the 1980s were
painful enough to suggest that inflation rates might be held back by a force ignored
in rational expectations models, namely, inertia caused by strategic interdepen-
dence among private economic agents”. “The inertia was considered so large that
negative shocks to inflation, such as the oil–price hikes in the 1970s, were believed
to shift inflation to a new level, where it would stay until a new shock occurred.
Empirical studies of the Phillips curve and the finding of a random–walk compo-
nent in the inflation rate supported the hypothesis of inertial inflation” (Durevall,
1998:424).

Novaes (1993) measured the degree of inertia in the Brazilian inflation using
cumulative impulse response functions from fitted ARIMA models, and found
it to be roughly 1/3, thus implying that one third of the inflationary dynamics
is due to inertia. Durevall (1998), using an error correction formulation, found
the level of inflation inertia in Brazil to be 0.41. Cati et al. (1999) have argued
that nearly all of the so-called shock plans which were designed to curb inflation
and were implemented in Brazil since the mid-1980s brought inflation down for

1See, for instance, Simonsen (1988), Novaes (1993) and Durevall (1998, 1999) concerning the
Brazilian experience.
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a few months and then failed.The observations corresponding to these months
when inflation was artificially low have been termed ‘inliers’, and the authors have
claimed that they tend to bias traditional unit root tests. This motivated them to
design corrected tests by adding dummy variables to the usual augmented Dickey-
Fuller (ADF) test. The initial puzzle they addressed was the following: the ADF
test rejected the unit root null (thus suggesting no inertia), and yet an estimate
of the degree of long-run persistence (i.e., inertia) indicated that such persistence
was 0.97, i.e., nearly what is expected for a pure random walk process (i.e., full
inertia). The modified tests they proposed, unlike the ADF test, did not reject
the unit root null at the usual significance levels, thus being consistent with the
high inertia levels they found. The main idea behind their approach was to move
the shock plans from the noise to the trend function, thus isolating their effects.
Overall, they identify five shock plans that took place between 1986 and 1991 and
covered a total of 22 months. Durevall (1999) finds that inflation inertia is low in
Brazil. However, the data he used does not include the most recent period of the
Brazilian economic history, and hence he does not have to deal with the issue of
handling potential inliers.

In this paper we show that robust unit root tests achieve the same conclusion
as ADF-type tests that have been properly modified to account for inliers and
shock plans through the specification and placement of dummy variables. The
robust tests require no such variables. The tests suggest that there is some inertia
in the Brazilian inflationary dynamics. We then measure how much inertia has
been driving Brazilian inflation, and find that inflation inertia is, conversely to
what has been previously found, small and of second order. In effect, we find that
prior to 1986 the Brazilian inflationary dynamics displayed no inflation inertia. As
a consequence, the series of shock plans put into effect after February 1986 may
have been based on an incorrect diagnosis of the inflationary driving forces.

2. The Data

We use two different monthly time series for the Brazilian inflation. The first
one is the series used by Cati et al. (1999), which ranges from January 1974 to
June 1993 (234 observations). It consists of the so-called ‘official inflation index’
and is a splice of several indices that were used by the Brazilian government
as the official index to all mandatory indexation schemes. The series has been
modified by the authors, who have replaced each observation by the geometric
mean of every two consecutive observations. The second series used in this paper
is considerably longer. It ranges from February 1944 through February 2000 (673
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observations) and consists of the IGP-DI (́ındice geral de preços-disponibilidade
interna) computed by the Getulio Vargas Foundation. The series is presented in
figure 1. The source of the data are several issues of Conjuntura Econômica and
Instituto Brasileiro de Geografia e Estat́ıstica (1990).

Figure 1
Monthly inflation rate (IGP-DI)
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Figure 1
Monthly inflation rate (IGP-DI)

3. Unit Root Tests

Although augmented Dickey-Fuller tests are useful for testing the null hypoth-
esis of nonstationarity, they may not be robust when the data generating process
follows a fat-tailed distribution. In such cases, the ADF test may suffer from low
power. An alternative test based on regression rank scores was recently proposed
by Hasan and Koenker (1997). Their test is based on the following model:

yt = ρyt−1 + ut,

ut = α1ut−1 + · · · + αput−p + εt

where the εt’s are a sequence of i.i.d. variates with mean zero and constant variance
σ2, and the roots of 1−α1z−· · ·−αpz

p = 0 lie outside the unit circle. The model
can be written using an ADF–like specification as
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∆yt = δ0 + γyt−1 +

p∑

j=1

δj∆yt−j + εt

or, more concisely, as

∆yt = Xtγ + Z ′

tδ + εt

with Xt = yt−1, Zt = 1, ∆yt−1, . . . ,∆yt−p. The null hypothesis of a unit au-
toregressive root is H0 : γ = 0, which is equivalent to ρ = 1 in the original
formulation. In order to perform the test, we estimate the restricted model (i.e.,
omitting the yt−1 term), obtain the regression rank score process âT (t) and the
associated ‘ranks’

b̂T =

(
−

∫ 1

0
ψ(τ)dâi(τ)

)T

t=1

where ψ(·) is the score function, and then compute the statistic

ST =

∑
(yt−1 − ŷt−1)̂bt√∑
(yt−1 − ŷt−1)2

,

where ŷt−1 denotes the projection of yt−1 on the matrix Zt = 1, ∆yt−1, . . . ,∆yt−p.
When the model includes a time trend, we use Zt = 1, t, ∆yt−1, . . . ,∆yt−p. The
statistic above has a complicated non-normal asymptotic null distribution, but it
can be shown that a modified version of it has a limiting standard normal null
distribution. Hence, critical values for the test can be easily obtained from a
normal table. The modified ‘statistic’ can be written as

S̃T =
σ

∆1/2
ST −

Σ12σyt−1

∆1/2σ

(
T γ̂ −

σ2 − σ2
u

2σ2
yt−1

)

with

σ2 = Σ11 = lim
T→∞

T−1E
(∑

ut

)2
, σ2

u = lim
T→∞

T−1
∑

E(u2
t )

σ2
yt−1

= T−2
∑

(yt−1 − ŷt−1)
2, ∆ = |Σ|,

where
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Σ = lim
T→∞

var
[
T−1/2

∑
(ut, vt)

′

]

with (ut, vt) being a bivariate process where vt = ψ(F (εt)).

The modified test statistic is then defined by replacing the unknown parameters
by consistent estimators. The resulting statistic has a limiting standard normal
distribution. Such a modified test statistic requires one to select a value for an-
other lag truncation parameter, `.This parameter is needed for the estimation of Σ,
which is performed using a Newey-West type covariance matrix estimator (Newey
and West, 1987).2 Thompson (2001) argues that this modification seriously af-
fects the power of the test, especially when the innovation distribution is similar
to the normal distribution, e.g., a t distribution with a large number of degrees of
freedom. The simulation results in this paper are in agreement with Thompson’s
claim. This led us to also consider unmodified versions of robust M-tests (type e
and type t tests) proposed by Thompson (2001). Thompson’s type t test is analo-
gous to the test suggested by Gutenbrunner et al. (1993). Indeed, the unmodified
type t test has proven to work quite well in the presence of inliers in the simula-
tions in this paper, while the Hasan and Koenker (1997) test, a modified version
of the t test, does not work well in this case. The test statistics (two versions, an
e and a t test) suggested by Thompson (2001) are given by

ts = σ−1
ψ ST and es = σ̂ε[ϕ̂

−1(1)](T−2X ′MX)−1/2ST

with

σ̂2
ε = T−1

∑
(ε̂t − ε̄)2 and ϕ̂(1) = 1 − δ̂R,3 − . . . − δ̂R,p+2

where the ε̂t = ∆yt −Z ′

tδ̂R are the residuals from estimating the model under the
null, ε̄ is their average, δ̂R,i is the ith element of δ̂R, and M = I − (Z ′Z)−1Z ′ is
the projection matrix.3 Here we consider the model which includes a time trend.
Thompson (2001) approximates the critical values of the test using a Cornish-
Fisher expansion. The approximations to the 5% quantiles of the asymptotic null

2See Hasan (1993), Hasan and Koenker (1997), and Koenker (1997) for further details.
3Denote the cumulative distribution function of the errors εt by F (·). For the rank test

based on Wilcoxon scores, ψ(x) behaves asymptotically as F (x)− 0.5. For normal scores, ψ(x) is
asymptotically Φ−1(F (x)), where Φ(·) is the standard normal cumulative distribution function.
For sign scores, ψ(x) behaves asymptotically as 0.5 × sign(F (x) − 0.5). The σ2

ψ parameter does
not depend on the error density. For tests based on normal, Wilcoxon and sign ranks, it can be
shown to be equal to 1, 1/12 and 1/4, respectively.
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distributions are given by expansions in the correlation parameter (%),4

ke(%) ≈ −22.128 + 16.104(1 − %) − 1.066(1 − %)2 − 0.040(1 − %)3

kt(%) ≈ −3.445 + 1.404(1 − %) + 0.370(1 − %)2 + 0.011(1 − %)3

One can estimate % as

%̂ = T−1
∑

ε̂tψ(ε̂t)/(σ̂εσψ)

The main motivation for working with robust unit root tests is that they enjoy
robustness properties that the traditional least squares-based tests do not enjoy.
In particular, their performance is not as sensitive to extreme observations as that
of the ADF test.5

At the outset, we have run the ADF test for the two series, i.e., the CGP
and the IGP-DI series. The former is the series used by Cati et al. (1999) and
the latter is the longer series that ranges from February 1944 through February
2000. Since the presence of inliers in the data can potentially bias the inference,
we have also used truncated versions of these two datasets. Their truncated ver-
sions (CGP(T) and IGP-DI(T)) stop in December 1985. Since the first shock plan
was introduced in early 1986, these two truncated series are known to not contain
inliers. Finally, the truncation lag parameter in the ADF especification (p) was
chosen using four different approaches, namely: minimization of the Bayesian in-
formation criterion (BIC); minimization of the Akaike information criterion (AIC);
general-to-specific sequential testing at the 10% level (SQ10); general-to-specific
sequential testing at the 5% level (SQ5). In all cases the ADF regression was
run using p = 20, 19, . . . , 1, 0, where p denotes the lag truncation parameter. The
results are summarized in table 1.

4Thompson (2001) computed % by numerical integration for the three score functions
(Wilcoxon, normal and sign-median) and several densities including normal, Student t3 and
double exponential.

5One could argue that any identified outliers (or inliers) should be removed from the series
prior to unit root testing. However, this approach can have an adverse effect on the power of the
test since extreme observations usually convey important information as to whether or not there
is mean reversion. Removing observations one believes to be outliers thus has important power
implications. This point is made by Maddala and Kim (1998:449), who also discuss the HK test.

RBE Rio de Janeiro 57(4):713-739 OUT/DEZ 2003
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Table 1
ADF test results

Series Lag truncation p selected ADF statistic Conclusion
CGP BIC 1 −6.60 Rejects unit root at 1%
CGP AIC 1 −6.60 Rejects unit root at 1%
CGP SQ10 19 −3.12 Does not reject unit root at 10%
CGP SQ5 13 −3.54 Rejects unit root at 5%
CGP(T) BIC 2 −3.65 Rejects unit root at 5%
CGP(T) AIC 8 −2.68 Does not reject unit root at 10%
CGP(T) SQ10 8 −2.68 Does not reject unit root at 10%
CGP(T) SQ5 8 −2.68 Does not reject unit root at 10%
IGP-DI BIC 0 −5.91 Rejects unit root at 1%
IGP-DI AIC 3 −5.10 Rejects unit root at 1%
IGP-DI SQ10 18 −2.85 Does not reject unit root at 10%
IGP-DI SQ5 14 −3.40 Rejects unit root at 10%
IGP-DI(T) BIC 2 −4.17 Rejects unit root at 1%
IGP-DI(T) AIC 13 −0.49 Does not reject unit root at 10%
IGP-DI(T) SQ10 15 −0.92 Does not reject unit root at 10%
IGP-DI(T) SQ5 11 −0.81 Does not reject unit root at 10%
Note: The 0.10, 0.05 and 0.01 (asymptotic) critical values are −3.13, −3.41 and −3.96, respectively.

Table 1 reveals that inference based on the ADF test regarding a unit root
in the inflationary dynamics is dependent on the approach used for selecting the
length of the autoregressive augmentation in the unit root test. Consider for
instance the IGP–DI series. The four approaches for lag truncation selection lead
to different inferences: the use of the BIC and AIC yields a strong rejection of
the unit root null (at the 1% significance level), sequential testing at 5% renders
rejection of the unit root null at the 10% significance level, and finally sequential
testing at 10% leads one to not reject the null hypothesis that there is a unit root
in the data generating process. It is noteworthy that the use of the BIC leads to
small values of autoregressive orders and to strong rejections of the unit root null
in all but one case (where rejection occurs at the 5% significance level), regardless
of whether there are inliers in the data. The use of the BIC in conjunction with
the ADF test is not recommended by some simulation studies. For example,
Agiakloglou and Newbold (1996) found the AIC and sequential testing at the 5%
level to be far superior to the BIC for selecting the lag truncation parameter of
ADF unit root tests. They find that the use of the BIC in this context leads
to severe size distortions due to its tendency to select very low values for the
truncation parameter, and they conclude that “the performance of the BIC in this
regard is unacceptable for practical use” (p. 232).

Next, we apply the Hasan and Koenker’s and Thompson’s rank tests to the two
inflation time series (CGP and IGP-DI). These will be denoted as HK test and ST
tests throughout the paper, respectively. We report results for the lag truncation
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parameter of the ADF specification (p) ranging from 1 to 20 and for three different
score functions (Wilcoxon, sign-median, and normal). For the HK test, the values
of the lag truncation parameter of the Newey-West covariance matrix estimator
were ` = 2, 4, 6, 8. The results of the ST type t test (with the respective estimated
critical values) for the CGP series and the longer IGP-DI series are given in table
2.

Table 2
ST type t test (5% level)

CGP IGP-DI

p Wilc. c.v. normal c.v. sign c.v. Wilc. c.v. normal c.v. sign c.v.

1 −0.781 −2.764 −1.069 −2.959 −0.322 −2.454 −0.012 −2.780 −0.464 −2.962 0.742 −2.493
2 −0.162 −2.767 −0.452 −2.964 0.252 −2.455 0.030 −2.780 −0.567 −2.962 0.907 −2.494
3 −0.168 −2.771 −0.434 −2.967 0.276 −2.458 0.414 −2.783 −0.093 −2.965 1.097 −2.497
4 −0.016 −2.772 −0.049 −2.969 0.319 −2.458 0.379 −2.783 −0.121 −2.965 1.161 −2.497
5 0.182 −2.765 0.013 −2.963 0.529 −2.448 0.448 −2.785 −0.083 −2.966 1.133 −2.499
6 0.221 −2.765 0.051 −2.963 0.529 −2.447 0.342 −2.785 −0.170 −2.967 1.151 −2.499
7 0.322 −2.766 0.077 −2.965 1.029 −2.446 0.516 −2.785 −0.019 −2.967 1.077 −2.499
8 0.389 −2.773 0.109 −2.972 1.039 −2.450 0.495 −2.786 −0.085 −2.968 1.027 −2.499
9 0.455 −2.777 0.168 −2.977 1.104 −2.453 0.578 −2.787 0.013 −2.968 1.160 −2.500
10 0.405 −2.778 0.126 −2.977 0.977 −2.454 0.604 −2.786 0.101 −2.968 1.167 −2.500
11 0.254 −2.757 −0.005 −2.960 0.741 −2.437 0.797 −2.791 0.319 −2.974 1.458 −2.502
12 0.345 −2.756 0.194 −2.959 0.921 −2.436 0.768 −2.788 0.255 −2.971 1.399 −2.500
13 −0.121 −2.753 −0.347 −2.957 0.108 −2.431 0.612 −2.786 0.148 −2.970 1.220 −2.498
14 −0.079 −2.752 −0.319 −2.955 0.209 −2.431 0.777 −2.785 0.267 −2.968 1.372 −2.498
15 0.175 −2.756 0.032 −2.959 0.307 −2.433 0.775 −2.785 0.249 −2.968 1.611 −2.496
16 −0.064 −2.763 −0.232 −2.965 0.022 −2.438 0.833 −2.785 0.301 −2.968 1.410 −2.497
17 −0.091 −2.764 −0.264 −2.967 0.067 −2.440 0.811 −2.787 0.266 −2.971 1.504 −2.498
18 0.250 −2.752 0.139 −2.957 0.137 −2.429 0.962 −2.788 0.483 −2.971 1.448 −2.498
19 0.099 −2.757 0.042 −2.962 −0.264 −2.433 0.845 −2.785 0.339 −2.969 1.475 −2.495
20 −0.024 −2.750 −0.051 −2.956 −0.242 −2.428 0.772 −2.784 0.263 −2.967 1.424 −2.494

The results in table 2 show that the ST type t test does not reject the unit root
null against a stationary alternative for both series in any of the cases considered
at the 5% significance level. The same conclusion holds for the ST type e test
and the HK test.6 That is, for both series, the HK and ST tests lead one to not
reject a unit root in the Brazilian inflationary dynamics regardless of the score
function used and regardless of the values of the truncation parameters. Given
the good power properties of the ST t test under a wide range of distributional
forms for the error term, even when the data contain atypical observations (see
the simulation results in section 5), we view such strong acceptance of the unit
root null as evidence of some inflation inertia.

6The tables are available from the authors upon request.
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It is noteworthy that Cati et al. (1999) developed modified ADF tests that
use dummy variables to account for the shock plans. Their modified tests did
not reject the unit root null when applied to the Brazilian inflation. In order to
construct the dummies used in the test, one needs to know the starting and ending
dates of all ‘shock plans’, and yet it is not easy to determine when a plan was no
longer in effect.7

Table 3
HK tests, truncated CGP and IGP-DI series.

CGP(T) series IGP-DI(T) series
p ` = 2 ` = 4 ` = 6 ` = 8 ` = 2 ` = 4 ` = 6 ` = 8
1 −2.579 −4.545 −5.049 −5.111 −14.071 −18.188 −20.839 −22.707
2 −1.987 −3.341 −3.989 −4.197 −10.229 −14.107 −17.203 −18.937
3 −2.107 −4.243 −5.335 −5.694 −9.599 −13.788 −17.230 −19.060
4 −2.569 −4.257 −4.657 −4.640 −9.426 −13.352 −16.869 −18.674
5 −1.991 −4.086 −4.811 −4.982 −9.596 −12.519 −16.047 −17.715
6 −1.981 −4.360 −5.443 −5.774 −9.684 −12.629 −16.325 −18.239
7 −1.631 −3.709 −4.735 −5.135 −9.724 −12.238 −15.445 −17.637
8 −2.362 −4.262 −5.144 −5.265 −9.551 −11.440 −13.876 −15.582
9 −2.234 −3.838 −4.472 −4.464 −10.090 −12.276 −14.915 −16.424
10 −2.757 −4.657 −5.431 −5.313 −10.017 −12.380 −15.090 −16.544
11 −2.582 −3.966 −4.371 −4.241 −10.036 −11.974 −13.950 −14.825
12 −2.457 −3.538 −3.719 −3.582 −9.860 −11.739 −13.785 −14.691
13 −1.887 −3.112 −3.323 −3.177 −9.252 −10.730 −12.338 −13.248
14 −1.773 −3.180 −3.431 −3.220 −8.941 −10.555 −12.285 −13.263
15 −1.583 −3.011 −3.265 −3.077 −9.236 −11.181 −13.157 −14.353
16 −1.572 −3.032 −3.350 −3.225 −9.400 −11.171 −12.948 −13.685
17 −1.590 −3.069 −3.469 −3.325 −9.737 −12.001 −14.450 −15.196
18 −1.889 −3.386 −3.798 −3.699 −9.860 −11.880 −14.224 −14.996
19 −1.825 −3.413 −3.840 −3.693 −9.880 −11.990 −14.442 −15.352
20 −1.501 −3.120 −3.654 −3.566 −9.986 −12.084 −14.490 −15.312

The HK, ST, and modified ADF tests therefore do not reject the unit root
null for the full sample, as one would expect. The two complete samples include
periods of uncontrolled growth in inflation, some failed attempts at stabilizing its
level and even brief periods of hyperinflation, thus yielding evidence that the series
has a stochastic trend (i.e., a unit root). All tests appear to deliver the correct
inference, but the HK and ST tests do so without requiring the specification and
placement of dummy variables.

We also applied the HK and ST tests to the two truncated series, i.e., the
CGP(T) and IGP-DI(T) series. For brevity, we concentrate on the results based

7The authors recognize the difficulty involved in choosing the ending dates of the several
stabilization plans, and opt for choosing such dates in a way that minimizes the number of possible
outliers in the residuals from an error correction model that includes inflation and nominal interest
rates.
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on the Wilcoxon score function, which is the most commonly used score function.8

The results are given in tables 3 and 4, respectively.

Table 4
ST tests, truncated CGP and IGP-DI series (5% level)

CGP(T) series IGP-DI(T) series
ts es ts es

p Wilc. c.v. Wilc. c.v. Wilc. c.v. Wilc. c.v.
1 −4.251 −3.381 −41.596 −21.406 −5.962 −3.354 −78.254 −21.104
2 −3.306 −3.334 −22.368 −20.883 −4.444 −3.342 −40.641 −20.970
3 −3.337 −3.328 −25.786 −20.821 −4.019 −3.339 −33.702 −20.941
4 −2.724 −3.333 −19.633 −20.877 −3.714 −3.340 −29.036 −20.948
5 −2.514 −3.326 −17.783 −20.802 −3.160 −3.340 −22.380 −20.954
6 −2.298 −3.319 −16.851 −20.722 −3.034 −3.341 −21.182 −20.959
7 −2.451 −3.321 −16.561 −20.744 −3.052 −3.340 −19.833 −20.950
8 −2.433 −3.324 −12.661 −20.773 −3.157 −3.332 −17.897 −20.863
9 −2.304 −3.331 −10.227 −20.854 −2.990 −3.339 −15.993 −20.946
10 −2.493 −3.341 −12.459 −20.965 −2.874 −3.339 −14.918 −20.947
11 −2.321 −3.331 −9.126 −20.855 −2.573 −3.347 −11.152 −21.026
12 −2.350 −3.319 −8.631 −20.726 −2.381 −3.346 −9.966 −21.020
13 −1.872 -3.315 −6.443 −20.679 −1.969 −3.343 −7.579 −20.981
14 −1.610 −3.331 −5.368 −20.855 −2.145 −3.343 −8.710 −20.981
15 −1.497 −3.329 −5.176 −20.837 −2.458 −3.345 −11.246 −21.006
16 −1.540 −3.325 −5.392 −20.790 −2.453 −3.343 −9.966 −20.987
17 −1.688 −3.330 −6.026 −20.844 −2.403 −3.340 −10.081 −20.947
18 −2.088 −3.330 −7.711 −20.840 −2.450 −3.342 −10.409 −20.971
19 −2.103 −3.326 −7.954 −20.797 −2.400 −3.341 −10.371 −20.966
20 −1.792 −3.310 −6.797 −20.631 −2.348 −3.341 −10.231 −20.959

We conclude from table 3 that the HK test yields rejection of the unit root null
hypothesis at the 5% level in all but one case (CGP(T) series, p = 7, ` = 2). In
nearly all cases we reject the unit root null at the 1% siginificance level. Indeed,
rejection of the null occurs at very low significance levels for the longer IGP-DI(T)
series. Moving to table 4, rejection of the unit root null by the ST tests occurs
for low values of the lag truncation parameter p. That is, the figures in table 4
and, particularly, in table 3, indicate that the Brazilian inflation rate followed a
stationary inflationary dynamics up until the introduction of the first shock plan in
early 1986. Such dynamics had no inertial component. This is in agreement with
the persistence values (close to zero) for these truncated series given in section 4.
Therefore, the first shock plan (the so-called Cruzado Plan) may have been based
on a mistaken diagnosis of the Brazilian inflation.

8The Wilcoxon score function enjoys the property that its asymptotic relative efficiency is
bounded below by 0.86 for all symmetric distributions. Overall, the simulation results in Hasan
(1993) favor this score function; see the discussion on pages 86–87.
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4. Measuring Inflation Inertia

A unit root in inflation indicates the existence of some inertia, that is, some
long–run persistence. It remains to be determined how much inertia there is in the
inflationary process. In this section, we use a nonparametric measure of long-run
persistence known as the ‘variance ratio’ (Cochrane, 1988) to measure the degree
of inertia in the Brazilian inflationary process. The persistence measure can be
written either as a ratio of variances or as a function of autocorrelations:

Vk ≡
1

k + 1

var(yt+k+1 − yt)

var(yt+1 − yt)
≡ 1 + 2

k∑

j=1

(
1 −

j

k + 1

)
ρj

where ρj is the jth autocorrelation of ∆yt. One can estimate the persistence
measure Vk by replacing the population autocorrelations with the sample auto-
correlations.9 If yt follows a random walk, the above ratio equals 1. On the other
hand, if the series is stationary, the ratio approaches zero as k increases. Finally, it
is noteworthy that an asymptotic standard error for the estimated variance ratio
can be obtained using Bartlett’s formula: s.e.(V̂k) = V̂k/

√
(3T/4(k + 1)). We have

computed the variance ratios up to k = 84, but, for brevity, we only report results
for some selected values of the parameter k in table 5.

Table 5
Variance ratio estimates

V̂k

k 10 20 30 40 50 60 70 80
CGP 0.49 0.31 0.22 0.19 0.14 0.12 0.12 0.12

(0.12) (0.11) (0.09) (0.09) (0.07) (0.07) (0.07) (0.08)
IGP-DI 0.51 0.33 0.25 0.21 0.15 0.17 0.17 0.16

(0.08) (0.07) (0.06) (0.06) (0.05) (0.06) (0.06) (0.07)
Note: Standard errors in parentheses.

The results in table 5 suggest that the degree of inertia in the Brazilian infla-
tionary dynamics is rather small, ranging from 0.12 (CGP series) to 0.16 (IGP-DI
series). It is noteworthy that these numbers are smaller than the degree of inertia
found by Novaes (1993) who used a parametric measure from fitted ARIMA mod-
els and a shorter series. As a check of the results presented above, we consider
the yearly inflation rate from 1862 through 1999 (138 observations), this series
having been constructed using estimates from Contador and Haddad (1975) and

9It is customary to multiply the estimated variance ratio by T/(T − k) to correct for a
downward finite-sample bias.
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data on the yearly IGP-DI obtained from Conjuntura Econômica. It is noteworthy
that the effects of possible outliers/inliers are downplayed when we work with a
longer yearly series since the impact of a couple of atypical monthly observations
on the yearly inflation figure is partially offset by the remaining monthly inflation
rates and, as a consequence, the yearly figure does not end up being as atypical.
We have computed the variance ratio for this series up to k = 30 and found that
V̂30 = 0.11, which is in agreement with the previous results.

One could argue that when using the variance ratio as a measure of long-
run persistence, the choice of k is arbitrary and that the variance ratio is biased
towards zero when k is large. The key is to note that k must be large so that
the variance ratio is able to capture the long-run dynamics of the series, and yet
k must not be large in relation to the sample size, in which case bias towards
zero would occur. The conclusion drawn from table 5 is based on k = 84 (i.e., 84
months or seven years after the initial shock) and 672 observations (IGP-DI series,
after differencing), thus yielding k/T = 0.125 (less than 13%).

A different persistence measure oftentimes used is based on an autoregressive
spectral estimation:

Â(1) =
ĥ∆y(0)

v̂ar(∆y)

where

ĥ∆y(0) =
s2
ep

(1 − d̂(1))2

with

s2
ep = T−1

T∑

t=1

ê2
tp

and d̂(1) =
∑p

j=1 d̂j . Here, T is the number of observations, and d̂j and êtp are
obtained from a pth order autoregression (Perron and Ng, 1998):

∆yt = c +

p∑

j=1

dj∆yt−j + etp

The truncation parameter p must be large enough to filter any serial correlation
so that etp is white noise. Cati et al. (1999) used this measure. They selected the
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value of p (p = 2) that minimized the BIC and found the long-run persistence of
Brazilian inflation to be 0.97.

Figure 2
Estimated autocorrelation functions
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A potential problem with the approach used by Cati et al. (1999) is that the
order of autoregression selected by the BIC may not be large enough to approxi-
mate well the true data generating process, and the persistence measure is heavily
dependent on the order of autoregression selected.Clearly, k must be large enough
to filter out any serial correlation present in the data, and a value of k which is too
small will induce residual serial correlation that will likely be translated into larger
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persistence levels. In order to investigate that, we have computed the persistence
measure above for both series and for p = 0, ..., 25. We have also computed the
AIC for each of the estimated models. Unlike the AIC, the BIC is consistent under
quite general conditions. However, for autoregressive models the AIC is, unlike
the BIC, asymptotically efficient (Brockwell and Davis, 1991). The AIC has a
tendency to overparameterize the selected model. If we think of p as a parameter
to be estimated, then it is well known that the BIC yields a consistent estimate
of p. However, if we do not think of the autoregressive specification as the correct
one, but as an approximation to an unknown data generating mechanism, then it
may be sensible to use the AIC and choose a more elaborate model in the hope
that this may provide a better approximation (Newbold and Bos, 1994:263).

The estimated persistence levels for the CGP and IGP-DI series corresponding
to the values of p which minimize the AIC (18 both series) are 0.10 and 0.17,
respectively. For the CGP series, p = 15 and p = 19 also deliver small AIC values,
and their respective persistence levels are 0.13 and 0.12. These numbers are in
agreement with the results obtained using the nonparametric variance ratio in
table 5, and are considerably smaller than Cati et al.’s (1999) persistence estimate
(which corresponds to p = 2). The estimated persistence levels are quite sensitive
to the order of autoregression selected, and the high persistence level obtained by
these authors is due to the small value of p they have used. Figure 2 shows the
estimated autocorrelation functions of the two residual series (p = 2 and p = 18,
CGP series). Some of the residual autocorrelations for the residual series obtained
using p = 2 (i.e., lag truncation selection based on the BIC) lie outside the 95%
confidence bands, thus suggesting that the autoregression was not long enough to
filter out all serial correlation. The same does not happen for the residuals obtained
using p = 18 (i.e., lag truncation selection using the AIC). Cati et al. (1999) show
that, when the data contain inliers, the autoregressive spectral persistence measure
is biased towards 1 when p is less than the duration of the plans (n). When p is
chosen at least as large as n, the result depends on the specific values of p and n.
When int(n/p) = 1, the persistence measure converges in probability to 1/3. They
correct the persistence measure in much the same way they correct the ADF test,
and find the corrected persistence figure to be even higher, namely 1.67. Again,
p = 2 was selected using the BIC. It is noteworthy that using the AIC to select
p for the corrected persistence meausure delivers substantially smaller persistence
values. We computed Cati et al. (1999) corrected persistence measure for p ranging
from 1 to 25, and the estimated persistence levels for the CGP and IGP-DI series
corresponding to the values of p which minimize the AIC are 0.01 (p = 22) and
0.15 (p = 15), respectively.
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In order to investigate whether the low persistence estimates we obtain are due
to inliers-induced biases, we have computed the variance ratio for up to k = 84 for
the IGP-DI(T) series. That is, we restrict the data to the period from February
1944 through December 1985. This subperiod does not include any so-called shock
plans, and hence has no potential inliers. Figure 3 displays the variance ratios
(solid lines) for both the entire period and the subsample of interest. The dotted
lines represent the variance ratio estimates plus and minus their corresponding
standard errors. The ‘inner’ solid line displays the variance ratio for the no-inliers
subsample and the ‘outer’ solid line plots the variance ratio for the entire sample.
Figure 3 shows that inflation long-run persistence is even lower when there are no
inliers in the sample. Indeed, the variance ratio estimate for the chosen subsample
corresponding to k = 84 is 0.08, i.e., half of that found for the entire sample (see
table 5). The autoregressive spectral persistence estimate (with p selected by the
AIC: p = 16) for the IGP-DI(T) series equals 0.04. Accordingly, this figure is even
smaller than the one obtained for the entire sample (0.17). For the persistence
measures to be inliers-biased, one would expect the estimated persistences for the
truncated sample periods (which do not contain inliers) to be larger than the
ones for the complete sample periods (which may include inliers). This does not
happen. Indeed, the opposite happens. This therefore suggests that the low degree
of inflation inertia obtained is not inliers-based biased.

Figure 3
Estimated variance ratios for the IGP-DI series based on the entire sample and on a

no-inliers subsample
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We also note that the measured degree of inflation inertia in the truncated
IGP-DI series is nearly zero regardless of the measure used, which is in agreement
with the inference (rejection of the unit root null) based on the HK test (table 3).
The HK test rejected the unit root null for this series, thus indicating no inflation
inertia prior to 1986. Since the truncated series has no inliers, one cannot claim
that the results of the HK test and the persistence estimates are biased towards
mean reversion due to inliers.

5. Some Simulation Results

In this section we report the results of Monte Carlo experiments designed to
evaluate the finite sample performance of the ADF and rank tests (HK and ST
tests) in the presence of inliers. For means of comparison we also present simulation
results for the case where the data generating process (DGP) is inliers-free.10 We
consider the first order autoregressive model

yt = y0 + µt + ut, ∆ut = γut−1 + vt, vt = 0.5vt−1 + ξt, t = 1, . . . , T

ξt being a white noise disturbance. When the data contain shock plans, the above
DGP is interrupted by occasional ‘inliers’,

yt = a for t ∈ ti,j(j = 1, . . .m; i = 1, . . . , nj)

Here, ti,j refers to the time index of the ith observation of plan j. There
are m shock plans and each contains nj observations. We consider two error
distributions: standard normal and Student t3. We used the following specific
values for the parameters. First, a = 4, which can be viewed as an initial level of
4% for the inflation rate. There are m = 3 plans irrespective of the sample size
and each plan contains nj = 6 (j = 1, 2, 3) observations corresponding to plans
that last six months. To complete the specifications, the initial condition is y0 = a
and µ = 0.1. We consider three different sample sizes: T = 250, 500, 750; the
first and the latter are roughly the sample sizes of the CGP and IGP-DI series,
respectively. The starting dates of the inliers are T = 50, 100, 150. All results
are based on 1,000 replications. The critical value for the ADF test is taken from
Fuller (1976) (−3.41, 5% level), the critical values for the HK tests are taken from

10We used the same starting seed for each entry to enable one to compare the simulation
results across tables.
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a normal table, and the critical values for the ST tests are based on the Cornish-
Fisher approximations given in section 3 with the values of % taken from table 1
of Thompson (2001).

Starting with the ADF simulation results, the figures in table 6 show that the
ADF test is severely oversized in the presence of inliers. Next, the figures in table
7 reveal that the HK test is undersized under normal errors. This problem is more
severe in the presence of inliers under both the normal and Student t3 densities
(tables 7 and 8), regardless of the score function used. The figures in tables 7
and 8 show that Thompson’s type e test is also biased in the presence of inliers,
with the bias occuring in the same direction as that of the ADF test. The bias
is of minor significance only for the sign score, particularly under normal errors.
The results in tables 7 and 8 also suggest that the size of the type t version of
Thompson’s test is close to the nominal 5% level in the presence of inliers, for
both the normal and Student t3 densities, except for the sign score under normal
errors.

Moving to the power results, the figures in table 9 reveal that the power of
the HK rank tests for the inliers-free DGP is significantly lower than the power
of the ADF and of Thompson’s tests under normal errors. For this specification,
Thompson’s tests (both versions e and t) have power similar to that of the ADF
test under the normal distribution (particularly for Wilcoxon and normal scores)
and have power at least as good as the ADF test for T = 500, 750 and higher
power for T = 250 under the Student t3 distribution. The results in table 9
also reveal that Thompson’s tests still have good power in the presence of inliers
under the normal distribution, the best performance being the rank test based on
normal scores, as expected, followed by the Wilcoxon scores. The tests based on
the sign score are the least powerful. The power performance of the ST tests in
the presence of inliers is even better under the Student t3 density (see table 10),
being close to 1 for the rank tests based on the scores Wilcoxon and normal for all
sample sizes considered and (1 + γ) = 0.9.11 Again, the sign scores have the least
accurate performance. We, therefore, conclude that the ST t test based on normal
and Wilcoxon scores (which also have size close to the nominal level) seems to
have an adequate performance in the presence of inliers.

11The sample kurtosis of the first differences of CGP and IGP-DI series are much greater than
the kurtosis of a normal variate (39.9 and 161.5, respectively; the kurtosis of a normal random
variable is 3). The sample kurtosis of ∆yt for the (complete) IGP-DI series is therefore over 50
times greater than that of the first difference of a Gaussian random walk. This can be viewed as
an indication of fat tails or generation of atypical observations by the data generating process.
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Table 6
ADF test simulation results

normal Student−t3
1 + γ Inliers T = 250 T = 500 T = 750 T = 250 T = 500 T = 750

1.0 No 0.042 0.046 0.040 0.055 0.040 0.051
0.9 No 0.699 0.999 1.000 0.716 0.999 1.000

(0.728) (0.999) (1.000) (0.705) (0.999) (1.000)
0.8 No 0.995 1.000 1.000 0.989 1.000 1.000

(0.997) (1.000) (1.000) (0.987) (1.000) (1.000)

1.0 Yes 0.457 0.347 0.251 0.402 0.252 0.198

Note: Size corrected power in parentheses.

Table 7
Size of rank tests under normal errors (5% level)

Normal errors, α = 5% T = 250 T = 500 T = 750
Inliers Test Wilc. Normal Sign Wilc. Normal Sign Wilc. Normal Sign

No STt 0.037 0.031 0.044 0.033 0.034 0.037 0.041 0.036 0.045
No STe 0.041 0.039 0.039 0.040 0.039 0.039 0.040 0.039 0.039
No HK 0.035 0.032 0.035 0.018 0.012 0.034 0.017 0.008 0.042
Yes STt 0.048 0.077 0.019 0.053 0.084 0.019 0.052 0.078 0.025
Yes STe 0.135 0.224 0.044 0.216 0.293 0.062 0.242 0.290 0.102
Yes HK 0.004 0.008 0.005 0.002 0.001 0.006 0.002 0.000 0.007

Table 8
Size of rank tests under Student-t errors with 3 degrees of freedom (5% level)

Student−t3 errors, α = 5% T = 250 T = 500 T = 750
Inliers Test Wilc. Normal Sign Wilc. Normal Sign Wilc. Normal Sign

No STt 0.050 0.045 0.046 0.038 0.039 0.056 0.047 0.049 0.053
No STe 0.051 0.048 0.053 0.040 0.043 0.042 0.044 0.043 0.050
No HK 0.045 0.035 0.046 0.041 0.030 0.053 0.035 0.028 0.050
Yes STt 0.055 0.085 0.048 0.066 0.099 0.033 0.081 0.104 0.053
Yes STe 0.193 0.251 0.111 0.277 0.332 0.133 0.267 0.306 0.160
Yes HK 0.009 0.010 0.012 0.008 0.006 0.014 0.014 0.012 0.020

As suggested by a referee, we have also carried out simulations with smaller
sample sizes. For instance, consider the situation where T = 150 and there are
two shock plans of six months each; the first shock plan starts at observation 50
and the second at observation 100, as before. Here, we only report results for
Thompson’s t test (STt) with Wilcoxon scores, since this test outperformed the
other ones in the previous simulations. The error distribution was Student-t with
three degrees of freedom, and the remaining simulation settings are as before. The
null rejection rate of the test at the 5% significance level was 5.6%. As for the
power of the test, the estimated powers for 1+γ = 0.8, 0.9 were 86.6% and 54.8%,
respectively. The results for normal scores were similar; the use of sign scores
resulted in a test with poorer performance, as in the previous simulations.
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Table 9
Power of rank tests under normal errors (5% level)

Normal errors, α = 5% T = 250 T = 500 T = 750

1 + γ Inliers Test Wilc. Normal Sign Wilc. Normal Sign Wilc. Normal Sign

0.9 No STt 0.597 0.618 0.371 0.993 0.998 0.874 1.000 1.000 0.990

(0.686) (0.706) (0.402) (0.996) (0.999) (0.901) (1.000) (1.000) (0.991)

0.9 No STe 0.719 0.717 0.637 0.999 1.000 0.987 1.000 1.000 1.000

(0.784) (0.791) (0.689) (1.000) (1.000) (0.992) (1.000) (1.000) (1.000)

0.9 No HK 0.136 0.165 0.094 0.151 0.191 0.079 0.176 0.201 0.087

(0.178) (0.201) (0.106) (0.241) (0.304) (0.095) (0.292) (0.392) (0.095)

0.8 No STt 0.967 0.987 0.768 1.000 1.000 0.997 1.000 1.000 1.000

(0.986) (0.993) (0.796) (1.000) (1.000) (0.998) (1.000) (1.000) (1.000)

0.8 No STe 0.995 0.996 0.954 1.000 1.000 1.000 1.000 1.000 1.000

(0.996) (1.000) (0.967) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

0.8 No HK 0.492 0.557 0.227 0.659 0.766 0.281 0.751 0.848 0.327

(0.535) (0.600) (0.257) (0.748) (0.838) (0.333) (0.828) (0.907) (0.357)

t 0.9 Yes STt 0.266 0.524 0.060 0.984 0.998 0.300 1.000 1.000 0.778

(0.281) (0.379) (0.121) (0.983) (0.988) (0.565) (1.000) (1.000) (0.887)

0.9 Yes STe 0.757 0.861 0.204 1.000 1.000 0.923 1.000 1.000 1.000

(0.522) (0.525) (0.230) (0.985) (0.980) (0.889) (1.000) (1.000) (0.999)

0.9 Yes HK 0.013 0.023 0.009 0.018 0.059 0.011 0.039 0.119 0.016

(0.079) (0.110) (0.045) (0.214) (0.358) (0.053) (0.270) (0.454) (0.053)

0.8 Yes STt 0.576 0.892 0.071 1.000 1.000 0.457 1.000 1.000 0.975

(0.598) (0.802) (0.123) (1.000) (1.000) (0.737) (1.000) (1.000) (0.990)

0.8 Yes STe 0.978 0.995 0.246 1.000 1.000 0.995 1.000 1.000 1.000

(0.892) (0.909) (0.270) (1.000) (1.000) (0.991) (1.000) (1.000) (1.000)

0.8 Yes HK 0.050 0.103 0.011 0.217 0.426 0.018 0.442 0.674 0.038

(0.240) (0.291) (0.055) (0.648) (0.761) (0.085) (0.795) (0.910) (0.102)

Note: Size corrected power in parentheses.

Table 10
Power of rank tests under Student-t errors with 3 degrees of freedom (5% level)

Student−t3 errors, α = 5% T = 250 T = 500 T = 750

1 + γ Inliers Test Wilc. Normal Sign Wilc. Normal Sign Wilc. Normal Sign

0.9 No STt 0.971 0.929 0.899 1.000 1.000 0.999 1.000 1.000 1.000

(0.972) (0.934) (0.907) (1.000) (1.000) (0.999) (1.000) (1.000) (1.000)

0.9 No STe 0.968 0.934 0.959 1.000 1.000 1.000 1.000 1.000 1.000

(0.968) (0.936) (0.957) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

0.9 No HK 0.670 0.528 0.573 0.922 0.821 0.842 0.986 0.938 0.952

(0.685) (0.581) (0.580) (0.944) (0.878) (0.830) (0.987) (0.958) (0.952)

0.8 No STt 1.000 0.999 0.994 1.000 1.000 1.000 1.000 1.000 1.000

(1.000) (0.999) (0.996) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

0.8 No STe 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(1.000) (0.999) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

0.8 No HK 0.923 0.861 0.826 0.998 0.982 0.976 0.999 0.998 0.997

(0.929) (0.878) (0.830) (0.998) (0.990) (0.975) (1.000) (0.998) (0.997)

0.9 Yes STt 0.895 0.906 0.547 1.000 1.000 0.976 1.000 1.000 1.000

(0.878) (0.821) (0.571) (1.000) (1.000) (0.989) (1.000) (1.000) (1.000)

0.9 Yes STe 0.978 0.972 0.846 1.000 1.000 0.999 1.000 1.000 1.000

(0.857) (0.775) (0.693) (1.000) (0.996) (0.998) (1.000) (1.000) (1.000)

0.9 Yes HK 0.340 0.371 0.192 0.778 0.752 0.507 0.959 0.928 0.775

(0.604) (0.582) (0.416) (0.927) (0.895) (0.729) (0.990) (0.968) (0.879)

0.8 Yes STt 0.997 0.996 0.653 1.000 1.000 1.000 1.000 1.000 1.000

(0.997) (0.993) (0.674) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

0.8 Yes STe 1.000 1.000 0.940 1.000 1.000 1.000 1.000 1.000 1.000

(0.996) (0.987) (0.864) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

0.8 Yes HK 0.640 0.669 0.245 0.975 0.966 0.654 0.999 0.998 0.922

(0.841) (0.819) (0.463) (0.997) (0.987) (0.839) (1.000) (0.999) (0.961)

Note: Size corrected power in parentheses.
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Next, we address the following question: Does the same hold for measures of
long-run shock persistence? Here we shall focus on the variance ratio, since it is
nonparametric and does not require model selection or the choice of truncation
parameters. We note that second moments are assumed finite for the variance ratio
to be defined, which rules out infinite variance processes, although many other
forms of leptokurtosis, such as ARCH, are allowed (Cambpell, Lo and MacKinlay,
1997:54). We again consider DGPs with and without inliers.

Our Monte Carlo simulation is based on a random walk process (yt = yt−1+ut),
for which the variance ratio is expected to equal 1 for all lags, where the error
term (ut) is generated from the following distributions: normal; t5; t3. Note, in
particular, that the third case allows for very fat tails. The sample size consists of
101 observations (so that ∆yt has 100 observations), and all results are based on
10,000 Monte Carlo replications. The mean variance ratios for k = 1, 2, . . . , 25 are
given in table 11. Note that the sample size is considerably smaller than either of
the series we use in section 4.

Table 11
Variance ratio simulation results (no inliers)

Mean variance ratios (V̂k) for different distributions
k normal (t∞) t5 t3
0 1.00 1.00 1.00
1 1.00 1.00 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00
4 1.00 1.00 1.00
5 1.00 1.00 1.00
6 1.00 1.00 1.00
7 1.00 1.00 1.00
8 1.00 1.00 1.00
9 1.00 1.00 1.00

10 1.00 1.00 1.00
11 1.00 1.00 1.00
12 1.00 1.01 1.01
13 1.00 1.01 1.01
14 1.01 1.01 1.01
15 1.01 1.01 1.01
16 1.01 1.01 1.01
17 1.01 1.01 1.01
18 1.01 1.01 1.01
19 1.01 1.02 1.02
20 1.01 1.02 1.02
21 1.02 1.02 1.02
22 1.02 1.02 1.02
23 1.02 1.02 1.02
24 1.02 1.03 1.03
25 1.02 1.03 1.03
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The figures in table 11 show that the variance ratios are all close to 1 (their
true value), regardless the lag (k) considered or the underlying distribution of the
process, even when obtained from a sample considerably smaller than the ones used
in this paper. That is, the variance ratio appears to be robust against fat-tailed
processes. Therefore, the low measures of inflation inertia obtained in this study
are not likely to be biased as a result of a long-tailed data generating process.12

Table 12
Variance ratio simulation in the presence of inliers

(normal errors, T = 250)

Variance ratios mean and s.e.

k (V̂k) k (V̂k) k (V̂k)
0 1.00 (0.00) 29 0.51 (0.22) 58 0.44 (0.25)
1 1.00 (0.04) 30 0.50 (0.22) 59 0.44 (0.25)
2 0.99 (0.06) 31 0.50 (0.22) 60 0.44 (0.25)
3 0.99 (0.08) 32 0.50 (0.22) 61 0.44 (0.25)
4 0.99 (0.09) 33 0.49 (0.23) 62 0.44 (0.26)
5 0.99 (0.11) 34 0.49 (0.23) 63 0.43 (0.26)
6 0.90 (0.12) 35 0.48 (0.23) 64 0.43 (0.26)
7 0.84 (0.13) 36 0.48 (0.23) 65 0.43 (0.26)
8 0.79 (0.14) 37 0.48 (0.23) 66 0.43 (0.26)
9 0.75 (0.15) 38 0.48 (0.23) 67 0.43 (0.26)

10 0.72 (0.16) 39 0.47 (0.23) 68 0.43 (0.26)
11 0.70 (0.17) 40 0.47 (0.23) 69 0.43 (0.26)
12 0.67 (0.17) 41 0.47 (0.23) 70 0.43 (0.26)
13 0.65 (0.18) 42 0.46 (0.23) 71 0.43 (0.27)
14 0.64 (0.19) 43 0.46 (0.23) 72 0.43 (0.27)
15 0.62 (0.19) 44 0.45 (0.24) 73 0.43 (0.27)
16 0.61 (0.19) 45 0.44 (0.24) 74 0.43 (0.27)
17 0.60 (0.20) 46 0.44 (0.25) 75 0.43 (0.27)
18 0.58 (0.20) 47 0.43 (0.25) 76 0.43 (0.27)
19 0.58 (0.20) 48 0.42 (0.25) 77 0.43 (0.27)
20 0.57 (0.21) 49 0.41 (0.26) 78 0.43 (0.27)
21 0.56 (0.21) 50 0.42 (0.26) 79 0.43 (0.28)
22 0.55 (0.21) 51 0.42 (0.25) 80 0.43 (0.28)
23 0.54 (0.21) 52 0.43 (0.25) 81 0.43 (0.28)
24 0.54 (0.22) 53 0.43 (0.25) 82 0.43 (0.28)
25 0.53 (0.22) 54 0.44 (0.25) 83 0.43 (0.28)
26 0.52 (0.22) 55 0.44 (0.25) 84 0.43 (0.28)
27 0.52 (0.22) 56 0.44 (0.25)
28 0.51 (0.22) 57 0.44 (0.25)
Note: Standard errors in parenthesis.

12We have also performed Monte Carlo simulations as described above, but using a stationary
data generating process. In all three cases, the variance ratio approaches zero, as expected.
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Table 13
Variance ratio simulation in the presence of inliers

(normal error, T = 750)

Variance ratios mean and s.e.

k (V̂k) k (V̂k) k (V̂k)
0 1.00 (0.00) 29 0.62 (0.22) 58 0.57 (0.26)
1 1.00 (0.03) 30 0.62 (0.22) 59 0.57 (0.26)
2 0.99 (0.05) 31 0.62 (0.23) 60 0.57 (0.26)
3 0.99 (0.06) 32 0.61 (0.23) 61 0.57 (0.27)
4 0.99 (0.07) 33 0.61 (0.23) 62 0.57 (0.27)
5 0.99 (0.08) 34 0.61 (0.23) 63 0.57 (0.27)
6 0.92 (0.09) 35 0.61 (0.23) 64 0.57 (0.27)
7 0.88 (0.11) 36 0.60 (0.23) 65 0.56 (0.27)
8 0.84 (0.12) 37 0.60 (0.23) 66 0.56 (0.27)
9 0.81 (0.13) 38 0.60 (0.24) 67 0.56 (0.27)

10 0.79 (0.15) 39 0.60 (0.24) 68 0.56 (0.27)
11 0.77 (0.15) 40 0.59 (0.24) 69 0.56 (0.28)
12 0.75 (0.16) 41 0.59 (0.24) 70 0.56 (0.28)
13 0.73 (0.17) 42 0.59 (0.24) 71 0.56 (0.28)
14 0.72 (0.18) 43 0.59 (0.24) 72 0.56 (0.28)
15 0.71 (0.18) 44 0.58 (0.25) 73 0.56 (0.28)
16 0.70 (0.19) 45 0.58 (0.25) 74 0.56 (0.28)
17 0.69 (0.19) 46 0.57 (0.25) 75 0.56 (0.28)
18 0.68 (0.19) 47 0.56 (0.26) 76 0.56 (0.28)
19 0.67 (0.20) 48 0.56 (0.26) 77 0.56 (0.28)
20 0.67 (0.20) 49 0.55 (0.27) 78 0.56 (0.29)
21 0.66 (0.20) 50 0.56 (0.26) 79 0.56 (0.29)
22 0.66 (0.21) 51 0.56 (0.26) 80 0.56 (0.29)
23 0.65 (0.21) 52 0.56 (0.26) 81 0.55 (0.29)
24 0.65 (0.21) 53 0.57 (0.26) 82 0.55 (0.29)
25 0.64 (0.21) 54 0.57 (0.26) 83 0.55 (0.29)
26 0.64 (0.22) 55 0.57 (0.26) 84 0.55 (0.29)
27 0.63 (0.22) 56 0.57 (0.26)
28 0.63 (0.22) 57 0.57 (0.26)
Note: Standard errors in parenthesis.

Tables 12, 13 and 14 report simulation results for the variance ratio in
the presence of inliers under normally distributed errors and sample sizes
T = {250, 750, 5000}. The DGP is the same as that which generated the results in
table 11 but is now interrupted by inliers or shock plans.13 The figures in tables
12, 13 and 14 show that the variance ratio is biased in the presence of inliers.
However, its bias tends to vanish as the sample size increases. For samples sizes
of T = 250, 750 the bias is roughly half the true value and for T = 5000 the bias
is of second order.

13Here we also set y0 = a so that the shock plans bring inflation to its initial level.
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Table 14
Variance ratio simulation in the presence of inliers

(normal errors, T = 5000)

Variance ratios mean and s.e.

k (V̂k) k (V̂k) k (V̂k)
0 1.00 (0.00) 29 0.97 (0.06) 58 0.96 (0.08)
1 1.00 (0.01) 30 0.97 (0.06) 59 0.96 (0.08)
2 1.00 (0.01) 31 0.97 (0.06) 60 0.96 (0.08)
3 1.00 (0.02) 32 0.97 (0.06) 61 0.96 (0.08)
4 1.00 (0.02) 33 0.97 (0.06) 62 0.96 (0.08)
5 1.00 (0.02) 34 0.97 (0.06) 63 0.96 (0.08)
6 0.99 (0.02) 35 0.97 (0.06) 64 0.96 (0.08)
7 0.99 (0.03) 36 0.97 (0.06) 65 0.96 (0.08)
8 0.99 (0.03) 37 0.97 (0.06) 66 0.96 (0.08)
9 0.98 (0.03) 38 0.97 (0.06) 67 0.96 (0.08)

10 0.98 (0.03) 39 0.97 (0.07) 68 0.96 (0.08)
11 0.98 (0.04) 40 0.97 (0.07) 69 0.96 (0.08)
12 0.98 (0.04) 41 0.97 (0.07) 70 0.96 (0.08)
13 0.98 (0.04) 42 0.97 (0.07) 71 0.96 (0.08)
14 0.98 (0.04) 43 0.97 (0.07) 72 0.96 (0.08)
15 0.98 (0.04) 44 0.97 (0.07) 73 0.96 (0.09)
16 0.97 (0.04) 45 0.96 (0.07) 74 0.96 (0.09)
17 0.97 (0.05) 46 0.96 (0.07) 75 0.96 (0.09)
18 0.97 (0.05) 47 0.96 (0.07) 76 0.96 (0.09)
19 0.97 (0.05) 48 0.96 (0.07) 77 0.96 (0.09)
20 0.97 (0.05) 49 0.96 (0.07) 78 0.96 (0.09)
21 0.97 (0.05) 50 0.96 (0.07) 79 0.96 (0.09)
22 0.97 (0.05) 51 0.96 (0.07) 80 0.96 (0.09)
23 0.97 (0.05) 52 0.96 (0.07) 81 0.96 (0.09)
24 0.97 (0.05) 53 0.96 (0.08) 82 0.96 (0.09)
25 0.97 (0.05) 54 0.96 (0.08) 83 0.96 (0.09)
26 0.97 (0.06) 55 0.96 (0.08) 84 0.96 (0.09)
27 0.97 (0.06) 56 0.96 (0.08)
28 0.97 (0.06) 57 0.96 (0.08)
Note: Standard errors in parenthesis.

6. Concluding Remarks and Discussion

Many time series contain groups of observations which are not typical but
due to abrupt governmental interventions. One example is the time series on the
Brazilian inflation rate, which contain several groups of observations that were
artificially lowered below their ‘natural level’ by soon-to-fail stabilization plans.
Such observations have been termed ‘inliers’ and can potentially bias traditional
unit root tests. Cati et al. (1999) have focused on this time series and proposed
modified Dickey-Fuller tests that are not size-distorted in the presence of such
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inliers. They show that the ADF test rejects the unit root null in favor of a
stationary alternative and that their modified test does not reject the unit root
null. We show that the same conclusion can be reached when one uses robust rank
regression-based unit root tests whose size and power robustness properties also
hold against fat-tailed innovational processes. The simulation results in this study
also suggest that Thompson’s (2001) t test performs well in the presence of inliers
in terms of both size and power when the rank tests are based on the Wilcoxon
and normal scores. In addition, the results of the rank tests together with a
persistence measure value close to zero for the two truncated series (CGP(T) and
IGP-DI(T)) suggest that the Brazilian inflation may have followed a stationary
dynamics (with no inflation inertia) up until the introduction of the first shock
plan by the Brazilian government in early 1986.

Our second main result relates to the degree of inertia in the Brazilian infla-
tionary process. Cati et al. (1999) obtained an estimate for such an inertial level
close to what is expected for a random walk process, which would correspond to a
fully inertial inflationary dynamics. At the closing of their paper, they write: “The
macroeconomic interpretation of our results is a support of the inflation inertia
hypothesis which essentially states that shocks to inflation are highly persistent”.
Our results, however, reveal a different picture, that is, a low degree of inflation
inertia regardless of the persistence measure or the dataset used. In particular, our
results suggest that the size of the inertial component in the Brazilian inflation-
ary dynamics is somewhere between 0.1 and 0.2, thus implying that it is a minor
component relative to other inflationary forces. Durevall (1998:430) found that
the degree of inflation inertia in Brazil is 0.41, and noted that “this is much less
than obtained from other studies and much less than what is assumed by many
theoretical models”. Our results point to inflation inertia levels even lower. That
is, we find that inflation inertia is a minor driving force in the inflationary dynam-
ics in Brazil, and that its importance has been overstated since the mid 1980s. A
clear example of that was the sudden and large devaluation of the Brazilian cur-
rency in early 1999. The inflation rate suddenly rose from 1.2% in January 1999
to 4.4% in the following month. By April 1999 the inflation rate was nearly zero.
Such dynamics is consistent with our results. Although the estimated persistence
values for the complete series may be biased downward due to the presence of
governmental interventions, it is also low for the corrected persistence measure
(using the AIC to select the lag truncation parameter), which takes into account
the shock plans, and for the truncated series, which do not contain inliers. Thus,
our results suggest that the inertial component is of second order in the Brazilian
inflationary dynamics.
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