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Abstract

It is now widespread the use of the Value-at-Risk (VaR) aami@al measure of risk. Most
accurate VaR measures make use of some volatility model asiG3ARCH-type models.
However, the pattern of the volatility dynamic of a portéofollows from the (univari-
ate) behavior of the risky assets, as well as from the typestnetigth of the associations
among them. Moreover, the dependence structure among iygoc@nts may change con-
ditionally to past observations. Some papers have attehtptenodel this characteristic
by assuming a multivariate GARCH model, or by considerirg ¢bnditional correlation
coefficient, or by incorporating some possibility for svhiés in regimes. In this paper we
address this problem using time-varying copulas. Our niogetrategy allows for the mar-
gins to follow some FIGARCH type model while the copula degmrce structure changes
over time.

Resumo

O Valor-em-Risco (VaR) & hoje certamente a medida maigadih na mensuracgao do risco.
As estimativas mais acuradas do VaR sao aquelas baseada®datos de volatilidade
tais como os modelos da familia GARCH. Contudo, o padradidamica da volatili-
dade de uma carteira de investimentos depende nao s6 dwmdamento marginal dos
ativos componentes, mas também do tipo e grau da asaoc@mtie os mesmos. Mais
ainda, a estrutura de dependéncia entre esses compopedéasiudar com o tempo, condi-
cionalmente as observagdes conjuntas passadas. Algigss ja consideraram este topico
tratando-o através de uma modelagem GARCH multivariadaposiderando o coeficiente
de correlagao condicional, ou incorporando a possaulédde mudancgas de regime. Neste
artigo tratamos este problema usando copulas com pa@netriando no tempo. Nossa
estratégia de modelagem inclui a modelagem univariadgaésgrdos modelos FIGARCH,
enquanto que a estrutura de dependéncia & modelada parGpuia condicional aos va-
lores passados.
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1. Introduction

According to the Capital Adequacy Directive of the Basel @aittee, the
Value-at-Risk of a portfolio is a value large enough to cat®fosses over &-
day holding period with a probability dfl. — «) (denoted by VaRy; V), usually
a = 0.01 and N = 10 days). Despite this very simple definition, its accurate
estimation may be not so simple, since it is highly dependerthe correct speci-
fication of the multivariate probability distribution ofehvariables composing the
portfolio. We note that while the Valg; V) estimate is held fix during the period
of 10 days, each component and/or the dependence strucoreaing them,
keep varying with time. This concern is the subject of thipgra

Series of financial log-returns present time-varying motsi@vhich may be
modeled by some combination of ARFIMA and FIGARCH type madéls these
conditional models provide better forecasts, conditioisid measures were intro-
duced and are now standard tools in finance, for example piiéitional VaR.

However, the pattern of the volatility dynamic of a portéofollows from the
(univariate) behavior of the component asset returns, dsagdrom the type
and strength of the associations among them. Moreovergperalence structure
among the components may change over time, conditionaphasb observations.
Some papers have attempted to model this characteristicdymang a multi-
variate GARCH model; or by considering the conditional etation coefficient,
that is, the correlation coefficient based on just the veryddor very small) ob-
servations; or by assuming regime switches which wouldripaate correlation
breakdowns associated with economic downturns. Beside¥dR estimation,
the specification of the multivariate conditional disttilbn is the basis for many
important financial applications, for example, portfolelextion, option pricing,
asset pricing models. In this paper we specify the mult@tarconditional distri-
bution of asset returns using copulas.

A d-dimensional copula is a cumulative distribution functi@df) in [0, 1]¢
with uniform(0, 1) margins. It summarizes the dependence structure indepen-
dently of the specification of the marginal distribution. #fell see later on in
this paper the advantages of this definition, which allowsysoperly model the
each margin.

Copulas have become standard tools in fields of finance andainse (see
Georges et al. (2001), Embrechts et al. (2003), Cherubiii €2004),Fermanian
and Scaillet (2004), among others). Applications usingaayic copulas were
proposed more recently. Patton (2001) introduced the tiondi copula in the
bivariate case. Modeling exchange rates, he assumed aalbév&aussian con-
ditional copula with the correlation coefficient followirgGARCH-type model.
He considered also structural breaks and asymmetric cap&@imilarly, Genest
et al. (2003) allowed the Kendall's correlation coefficiemevolve through time
according current values of the conditional marginal varés.

Fermanian and Scaillet (2004) introduced the concepsefido-copulasThey
showed that the copula models defined in Patton (2001), Rgekiand Jondeau
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(2001), and also in Genest et al. (2003) are all pseudo-aspurhey proposed
a honparametric estimator of the conditional pseudo-@sulerived its normal
asymptotic distribution, and built up a goodness of fit téatistics.

Time varying dependence structure was also considered hyDém Goor-
bergh et al. (2005) for modeling the relation between batarbption prices and
the dependence structure of the underlying financial as&atton (2003) found
time variation to be significant in a copula model for asymrminetependence be-
tween two exchange rates where the dependence paramédarefdian ARMA-
type process.

In this paper we address the problem of modeling the evalttimugh time of
the bivariate distribution of financial log-returns usiranditional pseudo-copulas.
Considering the-student copula, we achieve great flexibility by allowing tor-
relation coefficient and the number of degrees of freedoratg ever time accord-
ing to the previous bivariate realizations. The model hagttential of providing
more accurate estimation and forecasting of the joint biehafrisky assets, since
it discriminates between stressful times and usual timesyedl as joint positive
and joint negative returns.

We define conditioning subsets of tfte 1]2, which may be related to several
lagged values. Theoretical aspects are in Doukhan (20@sting if the depen-
dence structure really depends on past values is a very tergassue. We test the
constancy of copula parameters using tests developedmnafgan and Wegkamp
(2004).

In Section 2 we provide a brief review of copula definitiongtreduce our
models, and give some theoretical support for them. In S8e&iwe report results
from a small simulation experiment to assess models siiitafair capturing the
evolution of copula parameters. In Section 4 we present aficapion were we
compute the conditional VaR. In Section 5 we conclude andudis some ideas
for further research.

To simplify the notation, in what follows we give results amgbdels in the
bivariate case.

2. Conditional Copulas

Consider a stationary procele,t,Xz,t)tEZ. In the case the joint law of
(X1, X2,1) is independent of, the dependence structure is(éf;, X2) given by
its (constant) copul@'. If (X1, X5) is a continuous random vector with joint cdf
F and marginald’, F», then, there is a unique copulapertaining tof’, defined
on [0, 1]? such that

C(Fi(w1), Fa(22)) = F(21, 22)

holds for any(x1,z2) € R?.

However, in many situations, there exists some time depensiucture,
which may be captured by conditional distributions withpest to past observa-
tions. In the multivariate setting we could consider coodil copulas. A time
dependent copula may not satisfy all properties of a (treputa (see Nelsen
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(1999)). The concept gbseudo-copulgsntroduced by Fermanian and Scaillet
(2004), formalize and unify some previous attempts in thieadion of modeling
time varying dependence structures using copulas.

A 2-dimensional pseudo-copuitaa functionC' : [0, 1]? — [0, 1] satisfying all
copula properties, except th@f(w, 1) is not necessarily equal o (or C(1,v) is
not necessarily equal t@. Fermanian and Scaillet (2004) proved the equivalent
of the Sklar’s theorem for a pseudo-copula.

Now, let(X7, X») be a continuous random vector frgf, Ay, P) to ®?, and
let A;, A, andB be some arbitrary sub-algebras. Theorem 3 in Fermanian and
Scaillet (2004) states that there exists a random functiorf0, 1]? x Q — [0, 1]
such that

P{(X1,X2) < (z1,22)|B}(w) = C(P{X1 < x1|A; Hw),
P{X;y < 5] A3} (w),w) = C(P{X1 < 21| A1}, P{X2 < 22 A2}) (w),

for every(z1,z2) € R? and almost everyw € Q. This functionC' is B([0, 1]?) ®
o(A1, A2, B) measurable. For almost every € Q, C(-, w) is a pseudo-copula
and is uniquely defined on the product of the values taken by~ P{X; <
zj|AjHw), 5 = 1,2. We use the notatiod’(:|.4,, Az, B) in the caseC' is the
unique(A;, Az, B)-pseudo copula associated withi;, X5).

Note thatC(-|.A;, A2, B)(w) may not be a copula, because in general, the
information provided by5 and.A,, or by B andA; is not the same. In general, the
law of (X7, X») conditional onB does not provide information on the conditional
marginal lawsF} (-|A;), j = 1,2. C(-| A1, A2, B)(w) is a true copula if and only
if

P{X; <uz;|B} = P{X; < z;|A;}, almost everywhere

for j = 1,2 and all (z1,22) € R2. This means tha8 cannot provide more
information aboutX; than.A;, for everyj = 1,2. For example, whel8 = A; =
As, such as in Patton (2001), we have a true conditional copula.

When modeling time dependent data, thealgebras(A4,,.45,5) are
usually indexed by: A;; = o(X;-1,Xj1-2,...), j = 1,2, and B, =
o((X1,0-1,X24-1), (X1,4—2, X2,4-2),...). The conditional and pseudo cop-
ulas depend thus on the indéxand on the past valugsXy ;—1, X2:—1),
(X1,4-2,X24-2),... of (X1, X2), being a sequence of copulas. In this paper we
study two cases:

1. Aj+ = (Xj1-1 € [aj,b;]) for somea;,b; € R, a; < b;, j = 1,2, and
B: = (X1,6-1,X2¢-1) € [a1,b1] X [agz, ba]).

LIn fact there is one restriction on these suitalgebras, which are satisfied if the marginal condi-
tional cdf’s, F; (x| A;) = P(X; < x5|A;j), j = 1,2, are strictly increasing, as we assume in this
paper.
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2. .Aj7t = ((Xj7t_1 S [aj,bj]),(Xjﬂg_g S [Cj,dj])) for SomEaj,bj,cj,dj S
§R, a; < bj,Cj < dj,j = 1,2, andBt = ((X17t_1,X27t_1) S [al,bl] X
[az,b2]), (X1,t—2, X2,—2) € [c1,d1] X [c2,d2])).

Our application is in the field of finance. Even though corodisil univari-
ate GARCH-type models, widely used in practice, usuallysidproperly to log-
returns data, there are many situations where a (condi}idependence struc-
ture must be specified. For example, in portfolio optimmati This motivated
Rockinger and Jondeau (2001) to develop a methodology fasoreng condi-
tional dependence by assuming time-varying copulas and GAR/pe models
with time-varying skewness and kurtosis in the marginatritistions. Using the
Hansen'’s (1994) generalized t-student as the error digimib for the GARCH
models and the Plackett’s copula, they provided empiricalence that the de-
pendency between financial returns may evolve through time.

Likewise Rockinger and Jondeau (2001), here we assume mpaiapseudo-
copulaCy conditional to the position of past joint observations ia thnit square.
In the first model, corresponding to the suikrlgebrag1), we decompose the unit
square into 16 squares, denoted®y j = 1,...16. Thatis,&; = [0,1/4] x
[0,1/4]; So = (1/4,2/4] x [0,1/4]; ...; andSi6 = (3/4, 1] x (3/4, 1]. We define
16 possibilities for the parametérdenoted byg, , s, ..., 0s,,, according tof;
is 0s, whenever(u;—1,v;-1) € Si; ...; andd; is 0s,, whenever{u;_1,v;—1) €
Si6. In this paper we use the Gausdi@én= p) and thet-studentd = (p,v))
parametric families of copulas (see Demarta and McNeildD@0dor the definition
and expressions related to theopula). In the case of thecopula, the dynamic
behavior of the copula parameters obeys

16
0r = (pt, 1) = Z(st,VSJ)I[(u,,,l,U,,,l)esj] (1)
j=1
wherel| g, is the indicator function of everi. This model is asymmetric (for ex-
ample,fs, is not necessarily equal #;,, or fs, is not necessarily equal &, )
and allows for testing various interesting hypothesis @) values, including
equality among some of them, zero correlation for sgimeonstant correlation,
and the effect of returns’ sign and magnitude on the subsegtrength of depen-
dence (effect ofoint bad or joint good news
We extend this model and let the copula parameters on titoedepend on
the past value$(X1 ¢—1, X2:-1), (X1,4—2,X2:—2)), according to o-algebra
(2). Now there are256 possibilities ford according to the location of
((wg—1,ve=1), (ut—2,v4—2)) in the 16 x 16 squares, denoted kY, ;, i,j =
1,...,16. For thet-copula we have:

16 16
et = (pt7 Vt) = Z Z(psi,j 9 VSq,,j )I[(’Uft717'U1;71)€S/L']I[(7J,t72,'Ut72)esj] . (2)

i=1 j=1
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Besides the characteristics already mentioned for mogeir(ddel (2) allows for
testing many combinations of events of interest, for examgignificance and/or
equality of the parametet, , andfs,,,,. A drawback is that the number of
observations per area now will be much smaller.

To estimate, we apply the maximum likelihood method in tvapst(see Gen-
est and Rivest (1993), Shi and Louis (1995), and also Chektial. (2002)). We
first fit the FIGARCH model to the log-returns, obtain the desils, and then we
apply the probability integral transformation using théreated conditional dis-
tribution to obtain thewniform(0, 1) data. That is, we obtain

Ut = Fl(xl,tao'itLAl,t) (3)

vy = Fy(xa,,05 | Ay) (4)

which are used to estimate the copulas.
For example, for mod€ill), we maximize with respect s, , 0s., ..., 05, the
log-likelihood (LL)

16 T
LL = Z Z log c(ut, ve, ps; 5 Vs )M j(ue_1,0i-1)€8)] (5)

j=1t=2

whereT is the sample size. Not&L equals the su@;il LL; whereLL; is the
log-likelihood computed using data following the evét, 1, v;—1) € S;].2

The time path for the upper (lower) tail dependence coeffttis obtained by
plugging the paths obtained fpy andv; in the formula ofAy (Ar).

The models allow for testing some nested statistical hyggighusing the log-
likelihood ratio chi-square statistic. We test the consyaof the parameters of
the conditional pseudo-copulas with respect,tthat is, the null hypothesi¥,, :
ps, = ps, = -+ = ps,, against mode(1), using the chi-square test statistic
(15 degrees of freedom for fixed). We also test if the model is asymmetric,
that is,Ho : ps, = ps,, Versus the alternatives, > pg,,, we compareCL, and
LL16. We test if returns react differently to joint large (pogitor negative) or joint
small (positive and negative) realizations, by testhig: ps, = ps, versus the
alternativeps, > ps,, andHy : ps,, = ps,, versus the alternatives,, > ps,, -

2]t would be interesting to also experiment the robust edtimaprocedures proposed by Mendes
et al. (2005), since they emphasize data in specific regibf ©]2. Since we are using here elliptical
pseudo-copulas, we expect good results using the weightedhmm likelihood estimates. We leave
this for future work.

3Thecoefficients of upper and lower tail dependeace given by

Ay = lim Cu, u)
ull 1 —u

Clu,u) .

, whereC(u,v) = Pr{U > u,V > v} and\p = lii%
u
provided a limitAy; € [0, 1] exists.
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3. Simulations

We now report the results from two simulation experimengsjghed to assess
the performance of the proposed models. In our experimeatdawnot address
the problem of misspecification of the copula family.

Experiment 1: True model is Gaussian constant on timefiked) but the time
varying mode( 1) is assumed and estimated.

We generate bivariate data (sample size 1500) based on ai@aaspula with
p fixed and equal to 0.70, and GARCH(1,1) margins. Usinglthid/ method we
estimate the dynamic modgl) based on a Gaussian copula. For each of the 200
repetitions we tested and did not reject the equality of @lctrrelation coeffi-
cients (with very few exceptions). The overall mean and 95%fidence interval
of theps, values,j = 1, ..., 16, are, respectively).7014, [0.6109,0.7715]. Using
the constant copula we obtained the me#996, and the 95% confidence interval
of [0.6849, 0.7143]. The conclusion is that a misspecified time varying model may
indicate the data follow a constant in time model.

Experiment 2: True model is some time-varying Gaussian, and modeand a
constant copula are estimated.

In this experiment we mimic a situation where the strengttiegfendence de-
pend upon volatility (or magnitude of absolute value datée true data generat-
ing process is Gaussian such that, on tinmnditionally on the previous observa-
tions (u;—1,v:—1) fall in squaresS; or Sig, p = 0.9; in squaresSg, S7, S10, S11,

p = 0.7; in squaresSy, S13, p = 0.5; (4) squaresSs, Ss, S5, Ss, So, S12,514,515,

p = 0.3. The number of simulations is 200, and the constant copuknresti-
mate is 0.602, with standard deviation of 0.014. Mod¢lperformed very well
and yielded, for each square, correlation coefficients meawl standard devia-
tions given in Table 1.

Tablel
Correlation coefficients means and standard errors fronefixent 2.

Square Sq So S3 S4 Ss Se Sy Ss
Truep 0.9 0.3 0.3 0.5 0.3 0.7 0.7 0.3

P 0.900 0.309 0.274 0.488 0.299 0.704 0.701 0.298
s.e.(p) 0.007 0.061 0.122 0.108 0.079 0.024 0.031 0.117
Square So S1o0 S11 S12 S13 S14 Sis Si6
Truep 0.3 0.7 0.7 0.3 0.3 0.9 0.3 0.9

P 0.288 0.698 0.702 0.293 0.517 0.276 0.303 0.900
s.e.(p) 0.108 0.028 0.025 0.079 0.091 0.124 0.083 0.007

4. Computing the Conditional VaR

To illustrate the usefulness of the time-varying copula gleek use daily log-
returns from the main indexes of two Latin America stock neéskthe Argentinian
(X1) and the Brazilia{X>) markets. The period covered is January 1rst, 1994 to
January 31rst, 2005.
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We assumd (X1 ¢+, X2.+)}7_, is a stationary process. The general model may
be written as:

(X1,6, Xot) = (pa,t, pro,e) + 1/ Belers, €a,) (6)

where, conditional t@,, whereZ, denote the information set at timg(p1 ¢, pio.¢)

is the true expectation dfX; ¢+, X5 ;) and; is a diagonal matrix with elements
(014,02.4). The sequence of standardized bivariate innovatigas;, €2 ;) }7_,

are independent of;, i.i.d. with zero means and unit variances. The innovations
(€11, €2,¢) possess copuld and univariate cdf§; andFs.

The conditional mean@:, ;, 112,;) and conditional variances ;, o3 ;) speci-
fications will be drawn from the ARMA and FIGARCHamilies. To each margin
we fit by maximum likelihood a wide selection of combinatiditleese models,
and choose the best one according to the AIC criterion falbly all necessary
statistical tests for verification of parameters estimatgnificance and check of
models assumptions. The residuals are used to obtajmthe ) data, which were
tested with respect to independence anduthef orm (0, 1) assumption (Shapiro
test for normality). Figure 1 shows the bivariate data ofteturns at left, and the
corresponding standardized unifdiinl) data at the right hand side.

The parametric copula specifications are those given ind@e2t namely the
Normal (or Gaussian) copula and the t-copula. We recallithtite case of con-
stantp, the t-copula will have symmetric tail dependence. The Emtie number
of degrees of freedom, the greater the tail dependence hanltigher the proba-
bility of joint extreme events.

30

Log returns from Brazil
Uniform(0,1)-Brazil

-10 -5 0 5 10 15

Log returns from Argentina Uniform(0,1)-Argentina

Figurel
The bivariate data of log-returns at left, and the corredpanstandardized unifor(0, 1) data at the right hand side

4We provide in the Appendix a review on FIGARCH models.
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029(13) | 0.34(13) | 045(9) | 043(6)
S13 St14 S15 S16
05(13) | 046(9) | 048(10) | 035(7)
S9 S10 St st12
05(13) | 037(10) | 05(8) | 0.33(13)
S5 S6 s7 S8
056(12) | 051(9) | 042(13) | 027(3)
St S2 S3 S4

Figure 2
Correlation coefficient (and degrees of freedom) estimattesichS; from model(1)

We start by fitting mode[1) to the transformed data. Figure 2 shows the
correlation coefficient (and degrees of freedom) estimatteschS;. We observe
that dependence is higher when at least one index is extrathaegative in the
previous day(S1, Se, S5). The test of the constancy of the parameters over time,
Ho : ps, = ps, = -+ = psye, rejected the null with a p-value @006 (the
constant-copula fit resulted ip = 0.45, v = 10, and\p = Ay = 0.0683). The
null Hy : ps, = ps,, was also strongly rejected against the alternative> pg,,.
This means that the markets react differently to joint eranegative or positive
previous observations, an well known type of asymmetryofimiation asymmetry
or effect of bad news). The Ljung-Box test applied to theneated path of;
rejected the null hypothesis of zero autocorrelation.

The fit of model(2) resulted in correlation coefficient values ranging from
—0.87 (Sy,12) t0 +0.92 (S1,4). However, the log-likelihood ratio test did not reject
the simpler time-varying model in favor of the complex tiwverying model. Thus
we try another model, modés), which is a simplification of modeR).

Model (3) assumes that is fixed and equal to the value found for the con-
stant copulax = 10), and that the correlation coefficients on timdepend on
data on timeg — 1 as in modelg2) and(3), and on times — 2 according to
which quadrant the joint observatiofis; 2, v:—2) fall. These quadrants arg,
representing thé——) data,S; representing thé+—) observations, and; and
S; corresponding respectively to tie-+) and the(++) data. There are thus
16 x 4 = 64 possibilities for the correlation coefficient.
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4 16
O=pr=> > PS5 X1 ,0e-1) €S X (uemo,00-2)€S7] - (1)

j=11i=1

The log-likelihood ratio test strongly rejected mode) in favor of model
(3). Several characteristics of the dependence structure mayfdrred from the
estimates. For example, the estimate of the correlatiofficiest ps, , of data
following extreme negative returns during two consecutiags is0.57. Note that
the value of the tail dependence coefficient under the cohstgpula model is
0.068, and thus the strenght of interdependence during strgssfidds would be
higher if estimated using dynamic models. When the the pést pbservations
are inSi¢.4 (joint consecutive extreme positive) the estimate is sendll47. This
reveals the asymmetry of the dependence structure.

Figure 3 shows the evolution through time of the correlatiod tail depen-
dence coefficients, during the most recent 100-days petfiiodhe first row we
show thep path, and in the second row the pathioﬂ'hey should be compared to
the constant copula resultg:= 0.45 and\ = 0.068.

2 o A ) A
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g o TYAYANN YA A Wi N RAVALN AVALA VA RVAN VA | JAYIWA!
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Es v v Y
Oct Nov Dec Jan
2004 2005

Figure3
Evolution through time of the copula correlation and taipeiedence coefficients, during the most recent 100-days
period, and assuming copula model (3)

One application of the proposed models is the computatidgheo€onditional
Value-at-Risk. Suppose a portfolio is composeddhyifferent instruments, with
nominal amountw; invested into asset i = 1,...,d. Assume that there is no
temporal dependence in the portfolio components seriasttaat they follow a
multivariate normal distribution (constant Gaussian dapuln this case all uni-
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variate margins are normal with standard deviatipand pairwise correlation co-
efficients given byp;;, ¢, = 1, ...d. The RiskMetrics formula for the Vaf; N)
is

VaR(o; N) = 240V N (8)

wherez,, is thea-quantile of the standard normal distribution, ani$ the portfo-
lio standard deviation, the square root of

d

o2 = szzo—tz -+ Zwiwjoiajpij (9)
i=1 i#j

Now supposel = 2 andN = 1. In this case, formula (8) becomes

VaR(a) = v/(VaR;)? + (VaRy)? + 2pVaR, VaR, (10)

where VaR represents the VaR) of assey = 1, 2, thatis, VaR = z,w,0;, and
p is the correlation coefficient. We compute (10) using theipues fits: fixed-time
and varying-time (model 3) copula parameters. We do thah#®a 000 days at the
end of the series. We estimate the models and compute the MaRtep ahead,
roll the window over the data, and repeat the process.

To decide which procedure provided a more accurate VaR atiat the 1%
level, we observe the number of times that the series febbbeyhe VaR. Model 3
performed better (11 times against 13 for fixed), the expkist&0. The expected
shortfall is—1.5462 and—1.6296, respectively for VaR computed using constant
p and time-varyingo, at thel% risk. So, the expected loss given that the daily
return is more extreme than the VaR value, is smaller unasfixed time model.

5. Conclusions and Discussions

In this paper we proposed a model for dynamically estimagedépendence
structure of a set of financial returns. Our modeling sthatipws for the margins
to follow some FIGARCH type model while the copula depen@esicucture also
changes over time. An interesting feature of our model isdha can test the effect
of some selected scenarios, for example, the effect of metjeint (positive or
negative) returns on the subsequent dependence amongptiresréOur exposition
was restricted to the bivariate case, but models can beyéagilemented and run
relatively fast in higher dimensions.

Research on time varying copulas is still in its infancy. fEhare many open
guestions, and there is room for both theoretical and coatioutal developments.
Many applications will naturally follow.

In this paper we provided empirical evidence that the depeoé structure
(given by its copula) among asset returns may be best repgessby a time-
varying copula. We computed the evolution in time of somedinand non lin-
ear measures of association. We showed that the ValueskteRtimation may
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be improved by assuming a dynamic copula. In addition, dyo@stimation of
the coefficient of tail dependence highligths the influent@revious joint ob-
servations, in particular joint negative returns, on thieseguent interdependence
between the assets. These findings may be used by investectrse portfolio
components.
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Appendix
FIGARCH models

Among the so calledtylized factghat characterize a return series, the behavior
of the autocorrelation function (ACF) of the data and sqdal&ta deserves close
attention. For the return series the sample ACF is typicadlgligible at almost all
lags, except for the first and second ones (it decays expaitgntHowever, the
sample ACF of the absolute values or their squares are athmgaisually decays
slowly and tends to stabilize for large lags (hyperbolicalexate). This empirical
fact is usually interpreted as evidence of long memory iratitly.

The first long memory time series model proposed (for the n&@an the Frac-
tionally Integrated ARMA model, the ARFIMA model, introded by Granger
and Joyeux (1980). An ARFIM®, d, q) process is a general class of processes
for the mean which ranges from the unit root ARINJAd = 1, ¢) process, up to
integrated processes of orderPerhaps the most theoretically discussed and em-
pirically tested (Bollerslev and Mikkelsen (1999), Bo#itav and Wright (2000),
Mikosch and Starictia (2003), among others) long rangem@gnce class of vola-
tility models consists of the Fractionally Integrated Geatieed ARCH mod-
els, FIGARCH models, introduced by Baillie et al. (1996)dd@ollerslev and
Mikkelsen (1996). Other important alternative models & Eractionally Inte-
grated Stochastic Volatility models of Breidt et al. (1998)d the Two Component
model of Ding and Granger (1996).

Let {r;}_, be atime series of asset returns. To capture the varyingtamme
variance ofr; it is assumed that

Ty = C + & (11)

whereC' is a constant and

5t|~7:t—1 = OtZt, (12)

wherez; is ani.i.d. sequence of random variables with zero mean and unit vari-
ance, and; represents the information set up to timé\ccording to Baillie et al.
(1996) and Bollerslev and Mikkelsen (1996), a FIGAREHI, s) model for the
conditional variance? satisfies

ef(1 = ¢(0)(1 — L) = w+ (1= B(L)(ef — a7) (13)
wherew > 0 is a real constant, thieactional integration parameted € [0, 1], £
is the lag operator)(£) = «(L£)+ S(L), andB(L) = 2;21 3;L£7. Thefractional
difference operatof1 — £)? can be expanded in a binomial series to produce an
infinite polynomial inL:

1-L)%=1- i(smck =1—04(L), (14)
k=1
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where the coefficientd,; ;, = d% in (14) are such that
k—1-—-d
Odk = d k-1 <T> ; (15)

forall £ > 1, wheredg o = 1.
The FIGARCHr, d, s) process has the infinite ARCH representation:

o2 =w(l—B(L) + AL, (16)
where the polynomial(£) is given by

ML) = MLl =1—(1-8£) (L)1 - L)% (17)
k=0
A FIGARCH(r, d, s) processes must meet some parameters restrictions to ensure
positivity of the conditional variance?.

Even though the series? is non-observable, its persistence properties are
propagated to the observable serigs Since the second moment of the uncondi-
tional distribution ofr, is infinite, the FIGARCH process is not weakly stationary.
Discussions about stationarity property of FIGARCH preessmay be found in
Nelson (1988), Mikosch and Stariciia (2003), among others

To assure the positiveness of the conditional varianceleBév and
Mikkelsen (1996) proposed the Fractionally Integrateddhential GARCH (FIE-
GARCH) model:

(L)1 — £)no? = w+ 3 (812 + fyj?) , (18)
=1 =3

[oF t—j
wherey; # 0 indicates the existence of leverage effects. By includiregéverage
term we allow the conditional variance to depend both on aigghmagnitude of
expected returns. This asymmetric model is an attempt tcehaotbther stylized
fact about asset returns, the effecbald newsrisky stocks respond differently to
positive high gains and low negative falls. The larger thveilage parameter value,
the larger the risk.

In this paper we also considered the very interesting (FRGHN-in-mean
model of Engle et al. (1987), which extends (11) to

ry = C+mg(o7) + e,

whereg(-) can be an arbitrary function of the volatility, we ug@?) = o2. This
model captures the effect of volatility on expected retur@se of the rationales
behind this model is the fact that a price fall reduces thee/alf an equity and
then increases the debt-to-equity ratio, raising votgtili
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