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Abstract
It is now widespread the use of the Value-at-Risk (VaR) as a canonical measure of risk. Most
accurate VaR measures make use of some volatility model suchas GARCH-type models.
However, the pattern of the volatility dynamic of a portfolio follows from the (univari-
ate) behavior of the risky assets, as well as from the type andstrength of the associations
among them. Moreover, the dependence structure among the components may change con-
ditionally to past observations. Some papers have attempted to model this characteristic
by assuming a multivariate GARCH model, or by considering the conditional correlation
coefficient, or by incorporating some possibility for switches in regimes. In this paper we
address this problem using time-varying copulas. Our modeling strategy allows for the mar-
gins to follow some FIGARCH type model while the copula dependence structure changes
over time.

Resumo
O Valor-em-Risco (VaR) é hoje certamente a medida mais utilizada na mensuração do risco.
As estimativas mais acuradas do VaR são aquelas baseadas emmodelos de volatilidade
tais como os modelos da famı́lia GARCH. Contudo, o padrão dadinâmica da volatili-
dade de uma carteira de investimentos depende não só do comportamento marginal dos
ativos componentes, mas também do tipo e grau da associaç˜ao entre os mesmos. Mais
ainda, a estrutura de dependência entre esses componentespode mudar com o tempo, condi-
cionalmente às observações conjuntas passadas. Algunsartigos já consideraram este tópico
tratando-o através de uma modelagem GARCH multivariada, ou considerando o coeficiente
de correlação condicional, ou incorporando a possibilidade de mudanças de regime. Neste
artigo tratamos este problema usando cópulas com parâmetros variando no tempo. Nossa
estratégia de modelagem inclui a modelagem univariada através dos modelos FIGARCH,
enquanto que a estrutura de dependência é modelada por umacópula condicional aos va-
lores passados.
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1. Introduction

According to the Capital Adequacy Directive of the Basel Committee, the
Value-at-Risk of a portfolio is a value large enough to coverits losses over aN -
day holding period with a probability of(1 − α) (denoted by VaR(α; N), usually
α = 0.01 andN = 10 days). Despite this very simple definition, its accurate
estimation may be not so simple, since it is highly dependenton the correct speci-
fication of the multivariate probability distribution of the variables composing the
portfolio. We note that while the VaR(α; N) estimate is held fix during the period
of 10 days, each component and/or the dependence structure connecting them,
keep varying with time. This concern is the subject of this paper.

Series of financial log-returns present time-varying moments which may be
modeled by some combination of ARFIMA and FIGARCH type models. As these
conditional models provide better forecasts, conditionalrisk measures were intro-
duced and are now standard tools in finance, for example, the conditional VaR.

However, the pattern of the volatility dynamic of a portfolio follows from the
(univariate) behavior of the component asset returns, as well as from the type
and strength of the associations among them. Moreover, the dependence structure
among the components may change over time, conditionally topast observations.
Some papers have attempted to model this characteristic by assuming a multi-
variate GARCH model; or by considering the conditional correlation coefficient,
that is, the correlation coefficient based on just the very large (or very small) ob-
servations; or by assuming regime switches which would incorporate correlation
breakdowns associated with economic downturns. Besides the VaR estimation,
the specification of the multivariate conditional distribution is the basis for many
important financial applications, for example, portfolio selection, option pricing,
asset pricing models. In this paper we specify the multivariate conditional distri-
bution of asset returns using copulas.

A d-dimensional copula is a cumulative distribution function(cdf) in [0, 1]d

with uniform(0, 1) margins. It summarizes the dependence structure indepen-
dently of the specification of the marginal distribution. Weshall see later on in
this paper the advantages of this definition, which allows usto properly model the
each margin.

Copulas have become standard tools in fields of finance and insurance (see
Georges et al. (2001), Embrechts et al. (2003), Cherubini etal. (2004),Fermanian
and Scaillet (2004), among others). Applications using dynamic copulas were
proposed more recently. Patton (2001) introduced the conditional copula in the
bivariate case. Modeling exchange rates, he assumed a bivariate Gaussian con-
ditional copula with the correlation coefficient followinga GARCH-type model.
He considered also structural breaks and asymmetric copulas. Similarly, Genest
et al. (2003) allowed the Kendall’s correlation coefficientto evolve through time
according current values of the conditional marginal variances.

Fermanian and Scaillet (2004) introduced the concept ofpseudo-copulas. They
showed that the copula models defined in Patton (2001), Rockinger and Jondeau
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(2001), and also in Genest et al. (2003) are all pseudo-copulas. They proposed
a nonparametric estimator of the conditional pseudo-copulas, derived its normal
asymptotic distribution, and built up a goodness of fit test statistics.

Time varying dependence structure was also considered by Van Den Goor-
bergh et al. (2005) for modeling the relation between bivariate option prices and
the dependence structure of the underlying financial assets. Patton (2003) found
time variation to be significant in a copula model for asymmetric dependence be-
tween two exchange rates where the dependence parameter followed an ARMA-
type process.

In this paper we address the problem of modeling the evolution through time of
the bivariate distribution of financial log-returns using conditional pseudo-copulas.
Considering thet-student copula, we achieve great flexibility by allowing the cor-
relation coefficient and the number of degrees of freedom to vary over time accord-
ing to the previous bivariate realizations. The model has the potential of providing
more accurate estimation and forecasting of the joint behavior of risky assets, since
it discriminates between stressful times and usual times, as well as joint positive
and joint negative returns.

We define conditioning subsets of the[0, 1]2, which may be related to several
lagged values. Theoretical aspects are in Doukhan (2004). Testing if the depen-
dence structure really depends on past values is a very important issue. We test the
constancy of copula parameters using tests developed in Fermanian and Wegkamp
(2004).

In Section 2 we provide a brief review of copula definitions, introduce our
models, and give some theoretical support for them. In Section 3 we report results
from a small simulation experiment to assess models suitability for capturing the
evolution of copula parameters. In Section 4 we present an application were we
compute the conditional VaR. In Section 5 we conclude and discuss some ideas
for further research.

To simplify the notation, in what follows we give results andmodels in the
bivariate case.

2. Conditional Copulas

Consider a stationary process(X1,t, X2,t)t∈Z
. In the case the joint law of

(X1,t, X2,t) is independent oft, the dependence structure is of(X1, X2) given by
its (constant) copulaC. If (X1, X2) is a continuous random vector with joint cdf
F and marginalsF1, F2, then, there is a unique copulaC pertaining toF , defined
on [0, 1]2 such that

C(F1(x1), F2(x2)) = F (x1, x2)

holds for any(x1, x2) ∈ ℜ2.
However, in many situations, there exists some time dependent structure,

which may be captured by conditional distributions with respect to past observa-
tions. In the multivariate setting we could consider conditional copulas. A time
dependent copula may not satisfy all properties of a (true) copula (see Nelsen
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(1999)). The concept ofpseudo-copulas, introduced by Fermanian and Scaillet
(2004), formalize and unify some previous attempts in the direction of modeling
time varying dependence structures using copulas.

A 2-dimensional pseudo-copulais a functionC : [0, 1]2 7→ [0, 1] satisfying all
copula properties, except thatC(u, 1) is not necessarily equal tou (or C(1, v) is
not necessarily equal tov). Fermanian and Scaillet (2004) proved the equivalent
of the Sklar’s theorem for a pseudo-copula.

Now, let(X1, X2) be a continuous random vector from(Ω,A0, P ) toℜ2, and
letA1,A2 andB be some arbitrary sub-σ-algebras.1 Theorem 3 in Fermanian and
Scaillet (2004) states that there exists a random functionC : [0, 1]2 × Ω → [0, 1]
such that

P{(X1, X2) ≤ (x1, x2)|B}(w) = C(P{X1 ≤ x1|A1}(w),

P {X2 ≤ x2|A2} (w), w) ≡ C(P {X1 ≤ x1|A1} , P{X2 ≤ x2|A2})(w),

for every(x1, x2) ∈ ℜ2 and almost everyw ∈ Ω. This functionC isB([0, 1]2) ⊗
σ(A1,A2,B) measurable. For almost everyw ∈ Ω, C(·, w) is a pseudo-copula
and is uniquely defined on the product of the values taken byxj 7→ P{Xj ≤
xj |Aj}(w), j = 1, 2. We use the notationC(·|A1,A2,B) in the caseC is the
unique(A1,A2,B)-pseudo copula associated with(X1, X2).

Note thatC(·|A1,A2,B)(w) may not be a copula, because in general, the
information provided byB andA1, or byB andA2 is not the same. In general, the
law of (X1, X2) conditional onB does not provide information on the conditional
marginal lawsFj(·|Aj), j = 1, 2. C(·|A1,A2,B)(w) is a true copula if and only
if

P{Xj ≤ xj |B} = P{Xj ≤ xj |Aj}, almost everywhere

for j = 1, 2 and all (x1, x2) ∈ ℜ2. This means thatB cannot provide more
information aboutXj thanAj , for everyj = 1, 2. For example, whenB = A1 =
A2, such as in Patton (2001), we have a true conditional copula.

When modeling time dependent data, theσ-algebras(A1,A2,B) are
usually indexed byt: Aj,t = σ(Xj,t−1, Xj,t−2, ...), j = 1, 2, and Bt =
σ((X1,t−1, X2,t−1), (X1,t−2, X2,t−2), ...). The conditional and pseudo cop-
ulas depend thus on the indext and on the past values(X1,t−1, X2,t−1),
(X1,t−2, X2,t−2), ... of (X1, X2), being a sequence of copulas. In this paper we
study two cases:

1. Aj,t = (Xj,t−1 ∈ [aj , bj]) for someaj , bj ∈ ℜ, aj < bj, j = 1, 2, and
Bt = ((X1,t−1, X2,t−1) ∈ [a1, b1] × [a2, b2]).

1In fact there is one restriction on these sub-σ-algebras, which are satisfied if the marginal condi-
tional cdf’s,Fj(xj |Aj) = P (Xj ≤ xj |Aj), j = 1, 2, are strictly increasing, as we assume in this
paper.

254



Computing Conditional VaR Using Time-varying Copulas

2. Aj,t = ((Xj,t−1 ∈ [aj , bj ]), (Xj,t−2 ∈ [cj , dj ])) for someaj, bj , cj , dj ∈
ℜ, aj < bj , cj < dj , j = 1, 2, andBt = ((X1,t−1, X2,t−1) ∈ [a1, b1] ×
[a2, b2]), (X1,t−2, X2,t−2) ∈ [c1, d1] × [c2, d2])).

Our application is in the field of finance. Even though conditional univari-
ate GARCH-type models, widely used in practice, usually adjust properly to log-
returns data, there are many situations where a (conditional) dependence struc-
ture must be specified. For example, in portfolio optimization. This motivated
Rockinger and Jondeau (2001) to develop a methodology for measuring condi-
tional dependence by assuming time-varying copulas and GARCH-type models
with time-varying skewness and kurtosis in the marginal distributions. Using the
Hansen’s (1994) generalized t-student as the error distribution for the GARCH
models and the Plackett’s copula, they provided empirical evidence that the de-
pendency between financial returns may evolve through time.

Likewise Rockinger and Jondeau (2001), here we assume a parametric pseudo-
copulaCθ conditional to the position of past joint observations in the unit square.
In the first model, corresponding to the sub-σ-algebras(1), we decompose the unit
square into 16 squares, denoted bySj , j = 1, ...16. That is,S1 = [0, 1/4] ×
[0, 1/4]; S2 = (1/4, 2/4]× [0, 1/4]; ...; andS16 = (3/4, 1]× (3/4, 1]. We define
16 possibilities for the parameterθ, denoted byθS1

, θS2
, ..., θS16

, according to:θt

is θS1
whenever(ut−1, vt−1) ∈ S1; ...; andθt is θS16

whenever(ut−1, vt−1) ∈
S16. In this paper we use the Gaussian(θ = ρ) and thet-student(θ = (ρ, ν))
parametric families of copulas (see Demarta and McNeill (2004) for the definition
and expressions related to thet-copula). In the case of thet-copula, the dynamic
behavior of the copula parameters obeys

θt = (ρt, νt) =

16∑

j=1

(ρSj
, νSj

)I[(ut−1,vt−1)∈Sj] (1)

whereI[E], is the indicator function of eventE. This model is asymmetric (for ex-
ample,θS3

is not necessarily equal toθS9
, or θS1

is not necessarily equal toθS16
)

and allows for testing various interesting hypothesis on the θSj
values, including

equality among some of them, zero correlation for somej, constant correlation,
and the effect of returns’ sign and magnitude on the subsequent strength of depen-
dence (effect ofjoint bad or joint good news).

We extend this model and let the copula parameters on timet to depend on
the past values((X1,t−1, X2,t−1), (X1,t−2, X2,t−2)), according to σ-algebra
(2). Now there are256 possibilities forθ according to the location of
((ut−1, vt−1), (ut−2, vt−2)) in the 16 × 16 squares, denoted bySi,j , i, j =
1, ..., 16. For thet-copula we have:

θt = (ρt, νt) =
16∑

i=1

16∑

j=1

(ρSi,j
, νSi,j

)I[(ut−1,vt−1)∈Si]I[(ut−2,vt−2)∈Sj]. (2)
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Besides the characteristics already mentioned for model (1), model (2) allows for
testing many combinations of events of interest, for example, significance and/or
equality of the parametersθS1,1

andθS16,16
. A drawback is that the number of

observations per area now will be much smaller.
To estimate, we apply the maximum likelihood method in two steps (see Gen-

est and Rivest (1993), Shi and Louis (1995), and also Chebrian et al. (2002)). We
first fit the FIGARCH model to the log-returns, obtain the residuals, and then we
apply the probability integral transformation using the estimated conditional dis-
tribution to obtain theuniform(0, 1) data. That is, we obtain

ut = F1(x1,t, σ
2
1,t|A1,t) (3)

vt = F2(x2,t, σ
2
2,t|A1,t) , (4)

which are used to estimate the copulas.
For example, for model(1), we maximize with respect toθS1

, θS2
, ..., θS16

the
log-likelihood(LL)

LL =
16∑

j=1

T∑

t=2

log c(ut, vt, ρSj
, νSj

)I[(ut−1,vt−1)∈Sj] (5)

whereT is the sample size. NoteLL equals the sum
∑16

j=1 LLj whereLLj is the
log-likelihood computed using data following the event[(ut−1, vt−1) ∈ Sj ].2

The time path for the upper (lower) tail dependence coefficient3 is obtained by
plugging the paths obtained forρj andνj in the formula ofλU (λL).

The models allow for testing some nested statistical hypothesis using the log-
likelihood ratio chi-square statistic. We test the constancy of the parameters of
the conditional pseudo-copulas with respect tot, that is, the null hypothesisH0 :
ρS1

= ρS2
= · · · = ρS16

against model(1), using the chi-square test statistic
(15 degrees of freedom for fixedν). We also test if the model is asymmetric,
that is,H0 : ρS1

= ρS16
versus the alternativeρS1

> ρS16
, we compareLL1 and

LL16. We test if returns react differently to joint large (positive or negative) or joint
small (positive and negative) realizations, by testingH0 : ρS1

= ρS6
versus the

alternativeρS1
> ρS6

, andH0 : ρS11
= ρS16

versus the alternativeρS16
> ρS11

.

2It would be interesting to also experiment the robust estimation procedures proposed by Mendes
et al. (2005), since they emphasize data in specific regions of [0, 1]2. Since we are using here elliptical
pseudo-copulas, we expect good results using the weighted maximum likelihood estimates. We leave
this for future work.

3Thecoefficients of upper and lower tail dependenceare given by

λU = lim
u↑1

C(u, u)

1 − u
, whereC(u, v) = Pr{U > u, V > v} andλL = lim

u↓0

C(u, u)

u
.

provided a limitλU ∈ [0, 1] exists.
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3. Simulations

We now report the results from two simulation experiments, designed to assess
the performance of the proposed models. In our experiments we do not address
the problem of misspecification of the copula family.

Experiment 1: True model is Gaussian constant on time (ρ fixed) but the time
varying model(1) is assumed and estimated.

We generate bivariate data (sample size 1500) based on a Gaussian copula with
ρ fixed and equal to 0.70, and GARCH(1,1) margins. Using theIFM method we
estimate the dynamic model(1) based on a Gaussian copula. For each of the 200
repetitions we tested and did not reject the equality of all 16 correlation coeffi-
cients (with very few exceptions). The overall mean and 95% confidence interval
of theρSj

values,j = 1, ..., 16, are, respectively,0.7014, [0.6109, 0.7715]. Using
the constant copula we obtained the mean0.6996, and the 95% confidence interval
of [0.6849, 0.7143]. The conclusion is that a misspecified time varying model may
indicate the data follow a constant in time model.

Experiment 2: True model is some time-varying Gaussian, and model(1) and a
constant copula are estimated.

In this experiment we mimic a situation where the strength ofdependence de-
pend upon volatility (or magnitude of absolute value data).The true data generat-
ing process is Gaussian such that, on timet, conditionally on the previous observa-
tions(ut−1, vt−1) fall in squaresS1 or S16, ρ = 0.9; in squaresS6, S7, S10, S11,
ρ = 0.7; in squaresS4, S13, ρ = 0.5; (4) squaresS2, S3, S5, S8, S9, S12,S14,S15,
ρ = 0.3. The number of simulations is 200, and the constant copula mean esti-
mate is 0.602, with standard deviation of 0.014. Model(1) performed very well
and yielded, for each square, correlation coefficients means and standard devia-
tions given in Table 1.

Table 1
Correlation coefficients means and standard errors from Experiment 2.

Square S1 S2 S3 S4 S5 S6 S7 S8

Trueρ 0.9 0.3 0.3 0.5 0.3 0.7 0.7 0.3bρ 0.900 0.309 0.274 0.488 0.299 0.704 0.701 0.298
s.e.(bρ) 0.007 0.061 0.122 0.108 0.079 0.024 0.031 0.117
Square S9 S10 S11 S12 S13 S14 S15 S16

Trueρ 0.3 0.7 0.7 0.3 0.3 0.9 0.3 0.9bρ 0.288 0.698 0.702 0.293 0.517 0.276 0.303 0.900
s.e.(bρ) 0.108 0.028 0.025 0.079 0.091 0.124 0.083 0.007

4. Computing the Conditional VaR

To illustrate the usefulness of the time-varying copula model we use daily log-
returns from the main indexes of two Latin America stock markets, the Argentinian
(X1) and the Brazilian(X2) markets. The period covered is January 1rst, 1994 to
January 31rst, 2005.
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We assume{(X1,t, X2,t)}T
t=1 is a stationary process. The general model may

be written as:

(X1,t, X2,t) = (µ1,t, µ2,t) +
√

Σt(ǫ1,t, ǫ2,t)′ (6)

where, conditional toIt, whereIt denote the information set at timet, (µ1,t, µ2,t)
is the true expectation of(X1,t, X2,t) andΣt is a diagonal matrix with elements
(σ1,t, σ2,t). The sequence of standardized bivariate innovations{(ǫ1,t, ǫ2,t)}T

t=1

are independent ofIt, i.i.d. with zero means and unit variances. The innovations
(ǫ1,t, ǫ2,t) possess copulaC and univariate cdfsF1 andF2.

The conditional means(µ1,t, µ2,t) and conditional variances(σ2
1,t, σ

2
2,t) speci-

fications will be drawn from the ARMA and FIGARCH4 families. To each margin
we fit by maximum likelihood a wide selection of combination of these models,
and choose the best one according to the AIC criterion followed by all necessary
statistical tests for verification of parameters estimatessignificance and check of
models assumptions. The residuals are used to obtain the(ut, vt) data, which were
tested with respect to independence and theuniform(0, 1) assumption (Shapiro
test for normality). Figure 1 shows the bivariate data of log-returns at left, and the
corresponding standardized uniform(0, 1) data at the right hand side.

The parametric copula specifications are those given in Section 2, namely the
Normal (or Gaussian) copula and the t-copula. We recall thatin the case of con-
stantρ, the t-copula will have symmetric tail dependence. The smaller the number
of degrees of freedom, the greater the tail dependence, and the higher the proba-
bility of joint extreme events.

Log returns from Argentina
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Figure 1
The bivariate data of log-returns at left, and the corresponding standardized uniform(0, 1) data at the right hand side

4We provide in the Appendix a review on FIGARCH models.
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S1 S2 S3 S4

S5 S6 S7 S8

S9 S10 S11 S12

S13 S14 S15 S16

0.56 ( 12 ) 0.51 ( 9 ) 0.42 ( 13 ) 0.27 ( 3 )

0.5 ( 13 ) 0.37 ( 10 ) 0.5 ( 8 ) 0.33 ( 13 )

0.5 ( 13 ) 0.46 ( 9 ) 0.48 ( 10 ) 0.35 ( 7 )

0.29 ( 13 ) 0.34 ( 13 ) 0.45 ( 9 ) 0.43 ( 6 )

Figure 2
Correlation coefficient (and degrees of freedom) estimatesat eachSj from model(1)

We start by fitting model(1) to the transformed data. Figure 2 shows the
correlation coefficient (and degrees of freedom) estimatesat eachSj. We observe
that dependence is higher when at least one index is extreme and negative in the
previous day(S1, S2, S5). The test of the constancy of the parameters over time,
H0 : ρS1

= ρS2
= · · · = ρS16

, rejected the null with a p-value of0.006 (the
constantt-copula fit resulted inρ = 0.45, ν = 10, andλL = λU = 0.0683). The
nullH0 : ρS1

= ρS16
was also strongly rejected against the alternativeρS1

> ρS16
.

This means that the markets react differently to joint extreme negative or positive
previous observations, an well known type of asymmetry (information asymmetry
or effect of bad news). The Ljung-Box test applied to the estimated path ofρt

rejected the null hypothesis of zero autocorrelation.
The fit of model(2) resulted in correlation coefficient values ranging from

−0.87 (S9,12) to +0.92 (S1,4). However, the log-likelihood ratio test did not reject
the simpler time-varying model in favor of the complex time-varying model. Thus
we try another model, model(3), which is a simplification of model(2).

Model (3) assumes thatν is fixed and equal to the value found for the con-
stant copula (ν = 10), and that the correlation coefficients on timet depend on
data on timest − 1 as in models(2) and (3), and on timest − 2 according to
which quadrant the joint observations(ut−2, vt−2) fall. These quadrants areS∗

1 ,
representing the(−−) data,S∗

2 representing the(+−) observations, andS∗
3 and

S∗
4 corresponding respectively to the(−+) and the(++) data. There are thus

16 × 4 = 64 possibilities for the correlation coefficient.
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θt = ρt =

4∑

j=1

16∑

i=1

ρSij
I[(ut−1,vt−1)∈Si]I[(ut−2,vt−2)∈S∗

j
]. (7)

The log-likelihood ratio test strongly rejected model(1) in favor of model
(3). Several characteristics of the dependence structure may be inferred from the
estimates. For example, the estimate of the correlation coefficient ρS1,1

of data
following extreme negative returns during two consecutivedays is0.57. Note that
the value of the tail dependence coefficient under the constant copula model is
0.068, and thus the strenght of interdependence during stressfulperiods would be
higher if estimated using dynamic models. When the the past joint observations
are inS16,4 (joint consecutive extreme positive) the estimate is smaller,0.47. This
reveals the asymmetry of the dependence structure.

Figure 3 shows the evolution through time of the correlationand tail depen-
dence coefficients, during the most recent 100-days period.In the first row we
show thêρ path, and in the second row the path ofλ̂. They should be compared to
the constant copula results:ρ̂ = 0.45 andλ̂ = 0.068.
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Figure 3
Evolution through time of the copula correlation and tail dependence coefficients, during the most recent 100-days
period, and assuming copula model (3)

One application of the proposed models is the computation ofthe conditional
Value-at-Risk. Suppose a portfolio is composed byd different instruments, with
nominal amountwi invested into asseti, i = 1, ..., d. Assume that there is no
temporal dependence in the portfolio components series, and that they follow a
multivariate normal distribution (constant Gaussian copula). In this case all uni-
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variate margins are normal with standard deviationσi and pairwise correlation co-
efficients given byρij , i, j = 1, ...d. The RiskMetrics formula for the VaR(α; N)
is

VaR(α; N) = zασ
√

N (8)

wherezα is theα-quantile of the standard normal distribution, andσ is the portfo-
lio standard deviation, the square root of

σ2 =

d∑

i=1

w2
i σ2

i +
∑

i6=j

wiwjσiσjρij (9)

Now supposed = 2 andN = 1. In this case, formula (8) becomes

VaR(α) =
√

(VaR1)2 + (VaR2)2 + 2ρVaR1VaR2 (10)

where VaRj represents the VaR(α) of assetj = 1, 2, that is, VaRj = zαwjσj , and
ρ is the correlation coefficient. We compute (10) using the previous fits: fixed-time
and varying-time (model 3) copula parameters. We do that forthe 1000 days at the
end of the series. We estimate the models and compute the VaR one-step ahead,
roll the window over the data, and repeat the process.

To decide which procedure provided a more accurate VaR estimate at the 1%
level, we observe the number of times that the series fell beyond the VaR. Model 3
performed better (11 times against 13 for fixed), the expected is 10. The expected
shortfall is−1.5462 and−1.6296, respectively for VaR computed using constant
ρ and time-varyingρ, at the1% risk. So, the expected loss given that the daily
return is more extreme than the VaR value, is smaller under the fixed time model.

5. Conclusions and Discussions

In this paper we proposed a model for dynamically estimate the dependence
structure of a set of financial returns. Our modeling strategy allows for the margins
to follow some FIGARCH type model while the copula dependence structure also
changes over time. An interesting feature of our model is that one can test the effect
of some selected scenarios, for example, the effect of extreme joint (positive or
negative) returns on the subsequent dependence among the returns. Our exposition
was restricted to the bivariate case, but models can be easily implemented and run
relatively fast in higher dimensions.

Research on time varying copulas is still in its infancy. There are many open
questions, and there is room for both theoretical and computational developments.
Many applications will naturally follow.

In this paper we provided empirical evidence that the dependence structure
(given by its copula) among asset returns may be best represented by a time-
varying copula. We computed the evolution in time of some linear and non lin-
ear measures of association. We showed that the Value-at-Risk estimation may
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be improved by assuming a dynamic copula. In addition, dynamic estimation of
the coefficient of tail dependence highligths the influence of previous joint ob-
servations, in particular joint negative returns, on the subsequent interdependence
between the assets. These findings may be used by investors selecting portfolio
components.
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Appendix

FIGARCH models

Among the so calledstylized factsthat characterize a return series, the behavior
of the autocorrelation function (ACF) of the data and squared data deserves close
attention. For the return series the sample ACF is typicallynegligible at almost all
lags, except for the first and second ones (it decays exponentially). However, the
sample ACF of the absolute values or their squares are all positive, usually decays
slowly and tends to stabilize for large lags (hyperbolic decay rate). This empirical
fact is usually interpreted as evidence of long memory in volatility.

The first long memory time series model proposed (for the mean) was the Frac-
tionally Integrated ARMA model, the ARFIMA model, introduced by Granger
and Joyeux (1980). An ARFIMA(p, d, q) process is a general class of processes
for the mean which ranges from the unit root ARIMA(p, d = 1, q) process, up to
integrated processes of order0. Perhaps the most theoretically discussed and em-
pirically tested (Bollerslev and Mikkelsen (1999), Bollerslev and Wright (2000),
Mikosch and Stäricüa (2003), among others) long range dependence class of vola-
tility models consists of the Fractionally Integrated Generalized ARCH mod-
els, FIGARCH models, introduced by Baillie et al. (1996), and Bollerslev and
Mikkelsen (1996). Other important alternative models are the Fractionally Inte-
grated Stochastic Volatility models of Breidt et al. (1998), and the Two Component
model of Ding and Granger (1996).

Let{rt}T
t=1 be a time series of asset returns. To capture the varying conditional

variance ofrt it is assumed that

rt = C + εt (11)

whereC is a constant and

εt|Ft−1 = σtzt, (12)

wherezt is ani.i.d. sequence of random variables with zero mean and unit vari-
ance, andFt represents the information set up to timet. According to Baillie et al.
(1996) and Bollerslev and Mikkelsen (1996), a FIGARCH(r, d, s) model for the
conditional varianceσ2

t satisfies

ε2
t (1 − φ(L))(1 − L)d = w + (1 − β(L))(ε2

t − σ2
t ) (13)

whereω > 0 is a real constant, thefractional integration parameterd ∈ [0, 1], L
is the lag operator,φ(L) = α(L)+β(L), andβ(L) =

∑s

j=1 βjLj . Thefractional

difference operator(1 − L)d can be expanded in a binomial series to produce an
infinite polynomial inL:

(1 − L)d = 1 −
∞∑

k=1

δd,k Lk = 1 − δd(L) , (14)
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where the coefficientsδd,k = d Γ(k−d)
Γ(k+1)Γ(1−d) in (14) are such that

δd,k = δd,k−1

(
k − 1 − d

k

)
, (15)

for all k ≥ 1, whereδd,0 ≡ 1.
The FIGARCH(r, d, s) process has the infinite ARCH representation:

σ2
t = ω (1 − β(L))−1 + λ(L)ε2

t , (16)

where the polynomialλ(L) is given by

λ(L) =

∞∑

k=0

λkLk = 1 − (1 − β(L))−1φ(L)(1 − L)d. (17)

A FIGARCH(r, d, s) processes must meet some parameters restrictions to ensure
positivity of the conditional varianceσ2

t .
Even though the seriesσ2

t is non-observable, its persistence properties are
propagated to the observable seriesr2

t . Since the second moment of the uncondi-
tional distribution ofrt is infinite, the FIGARCH process is not weakly stationary.
Discussions about stationarity property of FIGARCH processes may be found in
Nelson (1988), Mikosch and Stäricüa (2003), among others.

To assure the positiveness of the conditional variance, Bollerslev and
Mikkelsen (1996) proposed the Fractionally Integrated Exponential GARCH (FIE-
GARCH) model:

φ(L)(1 − L)
d
lnσ2

t = w +

r∑

j=1

(βj |
εt−j

σt−j

| + γj

εt−j

σt−j

) , (18)

whereγj 6= 0 indicates the existence of leverage effects. By including the leverage
term we allow the conditional variance to depend both on signand magnitude of
expected returns. This asymmetric model is an attempt to model another stylized
fact about asset returns, the effect ofbad news: risky stocks respond differently to
positive high gains and low negative falls. The larger the leverage parameter value,
the larger the risk.

In this paper we also considered the very interesting (FI)GARCH-in-mean
model of Engle et al. (1987), which extends (11) to

rt = C + πg(σ2
t ) + εt,

whereg(·) can be an arbitrary function of the volatility, we useg(σ2
t ) = σ2

t . This
model captures the effect of volatility on expected returns. One of the rationales
behind this model is the fact that a price fall reduces the value of an equity and
then increases the debt-to-equity ratio, raising volatility.
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