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Abstract

In this paper a methodology to compare the performance &rdifit stochastic
discount factor (SDF) models is suggested. The startingtgothe estimation of
several factor models in which the choice of the fundamdatabrs comes from
different procedures. Then, a Monte Carlo simulation isgiesd in order to simu-
late a set of gross returns with the objective of mimickingtémporal dependency
and the observed covariance across gross returns. Fithelgytificial returns are
used to investigate the performance of the competing ags@igpmodels through
the Hansen & Jagannathan (1997) distance and some gooafrfiisstatistics of
the pricing error. An empirical application is provided the U.S. stock market.
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Resumo

Neste artigo apresenta-se uma metodologia para compaeafoarpance relativa
de diferentes modelos de fator estocastico de descontb (SElochastic Dis-
count Factor). O ponto de partida &€ a estimacao de modeldatores gerados
por abordagens distintas. Em seguida, uma simulacao deeMoarlo & cons-
truida para simular um conjunto de retornos (brutos) desticom o intuito de
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replicar a dependéncia temporal e respectivas covaagamostrais observadas
em retornos de ativos. Por fim, os retornos artificiais s#izados para inves-
tigar a performance de modelos de precificacdo de ativesé&s da distancia de
Hansen & Jagannathan (1997) e de algumas estatisticastelbéseadas em erros
de precificacao. Um exercicio empirico com dados desatnorte-americanos é
apresentado para ilustrar a metodologia proposta.

Palavras-chave: precificacao de ativos; fator estocastico de descornstarntia
Hansen-Jagannathan.

1. Introduction

In asset pricing theory, one of the major interests for eitgdirre-
searchers is oriented by testing whether a particular gsg@hg model
is indeed supported by the data. In addition, a formal proetb compare
the performance of competing asset pricing models is algpeat impor-
tance in empirical applications. In both cases, it is of whrelevance to
establish an objective measure of model misspecificatitie. miost useful
measure is the well-known Hansen & Jagannathan (1997)ndistéhere-
after HJ-distance), which has been used both as a modeladitigtool and
as a formal criterion to compare asset pricing models. Fipis bf compar-
ison has been employed in many recent papers. See for exdbgptgbell
& Cochrane (2000); Jagannathan & Wang (2002); Dittmar (2002gan-
natharet al.(1998); Farnswortlet al. (2002); Lettau & Ludvigson (2001a);
and Chen & Ludvigson (2009). As argued by Hansen & Richar®7)1,9
observable implications of asset pricing candidate maglelsonveniently
summarized in terms of their implied stochastic discountdis. As a re-
sult, some recent studies of the asset pricing literatuve baen focused
on proposing an estimator for the SDF and also on comparingpeting
pricing models in terms of the SDF model. For instance, sdtale&
Ludvigson (2001b), Chen & Ludvigson (2009), Arawgb al. (2006). A
different route to investigate and compare asset pricingleisohas also
been suggested in the literature. The main idea consistssofidng a
data generation process (DGP) for a set of asset returnsd lmas some
assumptions about the asset price behavior, and thenrmgeatontrolled
framework, which is used to evaluate and compare the ass#igpmod-
els. For instance, Fernandes & Vieira Filho (2006) studseugh Monte
Carlo simulations, the performance of different SDF estéwnat different
environments. One of the environments considered by thmesiis that all
asset prices follow a geometric Brownian motion. In thisscame should
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expect that a SDF proxy based on a geometric Brownian mosisumaption
would perform better than an asset pricing model that doeassume this
hypothesis. On the other hand, a critical issue of this mhoeeis that the
best asset pricing model from these particular environmeright not be a
good model in the real world. In other words, the best estmfatr each
controlled framework might not necessarily exhibit the sgmarformance
for observed stock market prices of a real economy.

In this paper, we propose a methodology to compare diffestemhas-
tic discount factor or pricing kernel proxies. Instead ofigeting the asset
returns from a direct ad-hoc assumption about the DGP offretuve use
factor models and related market information from the reahemy. The
idea is to create a set of gross returns with the objectiveioficking the
real world structure as closely as possible. Our startirigtps the esti-
mation of linear factor models (in the sense of the Arbitr&gieing The-
ory — APT of Ross, 1976), in which the choice of common factedsich
usually correspond to unobserved fundamental influencestams, come
from different procedures. For example, the well-knowndes of Fama &
French (1993, 1996, 1998), which evidenced those assensafithe U.S.
economy, could be explained by relative factors linked tarabteristics of
firms. The next step is to create a framework to compare thgpetiny as-
set pricing models. In this sense, a Monte Carlo simulatsoronstructed
to mimic, as closely as possible, the temporal dependeratyheobserved
covariance across gross returns. Finally, the artificialrns are used to
investigate the performance of the competing asset pricindels based
on the performance of some statistics. In order to compaset gsicing
models, several works use the HJ-distance on real data.t@tegy allows
calculating the average and median of the HJ-distance aalbsealiza-
tions of the Monte Carlo experiment, which is shown to be dulseodel
evaluation tool.

The main objective here is not to investigate and/or tegindisfac-
tor models to explain actual market returns, but rather twige a simu-
lated multifactor approach that allows one to properly caregand evalu-
ate different SDF proxies. In this sense, this paper aldoviglthe idea of
Farnsworthet al. (2002), which studies different SDFs by constructing arti-
ficial mutual funds using real stock returns from the CRSR.dataddition,
this controlled framework may be used for other applicaitmt involve
the study of asset returns, such as portfolio risk analysitress testing
exercises. This way, it is worth mentioning that the resptesented along
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the paper (regarding SDF proxies comparison) are, thusglitimmal on the
factor models adopted to replicate returns. In other wongsjmplicitly
assume that those models might be representative of redtias sprovided
that the focus of the paper is grounded on SDF comparisonghrivonte
Carlo simulation and not on factor model investigation.

Nonetheless, one advantage of this methodology is that ibmlg re-
stricts the analysis to known factors like the three facwir$-ama and
French, but also allows for purely statistical procedusesh as factor anal-
ysis. Moreover, the beta parameters associated with tlaasers are esti-
mated instead of calibrated. In addition, the covarianocacgire across
returns is conveniently taken into account in order to ceypé the observed
structure in the simulated setup.

To illustrate our methodology, we present a simple emgiagglica-
tion for the U.S. stock market, in which three SDF estima&wescompared:
a) the nonparametric estimator of Arawgjoal. (2006); b) the Brownian mo-
tion pricing model studied in Brandt al. (2006); and c) the traditional lin-
ear CAPM (see Cochrane (2001, p.152-166)). We also estiimatdansen
and Jagannathan SDF of minimum variance that will be usedbeneh-
mark. The common factors used in this exercise are formetiieg tsets:
(i) factors provided by the use of the factor analysis; (i tvell-known
three-factor model of Fama & French (1993, 1996); and (ii)eatended
version of the previous three-factor model of Fama and Frgi#mnget al.,
2006, see), including momentum and short- or long-termreaydactors.
In comparing asset pricing models, we use the average antmefithe
HJ-distances and a goodness-of-fit statistic provided byptiting error.
The result indicates that the SDF of Bramdtal. (2006) seems to be the
best model, given that the Brownian motion hypothesis is &ihlgenerate
SDF dynamics with adequate statistical features, whichclrser to the
Hansen and Jagannathan SDF.

This paper is organized as follows: Section 2 presents stoohastic
discount proxies; Section 3 discusses the factor modetsidbet shows the
procedures used to replicate the gross returns and thstisttimeasures
to evaluate the performance of the SDF estimators; Sectnegents the
empirical application for the U.S. stock market; and Sec@aoncludes.

2. Stochastic Discount Factor models

A general framework for asset pricing is well described irrrisan
& Kreps (1979), Hansen & Richard (1987) and Hansen & Jagaanat
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(1991), associated with the stochastic discount factorH)}Sivhich relies
on the pricing equatiory; = E; (m12++1), WwhereE;(-) denotes the
conditional expectation given the information availabi¢ime ¢, p; is the
asset pricemn;1 is the stochastic discount factor, amg, is the asset
payoff of thei-th asset irt + 1. This pricing equation means that the market
value today of an uncertain payoff tomorrow is representethb payoff
multiplied by the discount factor, also taking into accodiiterent states
of nature by using the underlying probabilittesThe stochastic discount
factor model provides a general framework for pricing asse&fs docu-
mented by Cochrane (2001), asset pricing can basically inensuwized by
two equations:

pt = Ei[miepimei] (1)
myr1 = f(data, parameteys 2

where the model is represented by the functidn), and the pricing equa-
tion (1) can lead to different predictions stated in termsetfirns?

Hansen & Jagannathan (1991) propose a way to calculate tReaS8@®
provide a lower bound on the variance of a stochastic digdaator (SDF).
In fact, although the authors do not deal with a direct edénof the SDF,
they show that the mimicked discount factef’, ; has a direct relation to
the minimal conditional variance portfolio. Moreover, yrexploit the fact
that it is always possible to project the SDF onto the spapaydffs, which
makes it straightforward to express the mimicking portfas a function
of only observable variables:

1= Iy [Ei (Ri1Riyq)] - Ry (3)

1According to Cochrane (2001, p.68), unless markets are leethere are an in-
finite number of SDFs, but all can be decomposedras: = myi,; + vey1, Where
Ei(vi+1Riy1) = 0, in whichm]_, is called the SDF mimicking portfolio.

2For instance, in the Consumption-based Capital Assetrigriciodel (CCAPM) con-
text, the first-order conditions of the consumption-basedieh summarized by the well-

u’(ct+1)
u’(ct)

known Euler equationp: = E: {6 xt+1] . The specification ofn.+1 corresponds

to the intertemporal marginal rate of substitution. Henge,; = f (¢, ) = ﬁ“f,c(”;)l)
wheref is the discount factor for the future; is consumption and (-) is a given utility
function. The pricing equation (1) mainly illustrates tleetf that consumers (optimally)
equate marginal rates of substitution to prices.

1
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whereuy isanN x 1 vector of ones, an®; is an/N x 1 vector stack-
ing all asset returns. Equation (3) delivers a nonparamesiimate of the
SDF that is solely a function of asset returns. There arerdifit estimates
of the SDF derived from other hypotheses, such as the SD¥edefiom
the hypothesis of Brownian motion pricing, the linear samstit discount
factor derived from the CAPM, and the nonparametric SDF efujaet al.
(2006).

)

Brownian motion pricing model

The price dynamics of a risky asset follows the basic Blacké& S
holes assumptions. Suppose that a vector of asset pridewdch
geometric Brownian motion (GBM). Such hypothesis is defibgd
the following partial differential equation:

dP 1
— ! 3
iz <R + u) dt +32dB 4

/
where, 42 = (%,...,% o= (1, uy) s isanN x N

positive definite matrix,P; is the price of the assét u is the risk
premium vector,R/ is the risk-free rate, an® is a standard GBM
of dimensionN. Using the Itd theorem, it is possible to show that:

. 1N/
i 1y VA VAL 52
R = Piiar _ e(Rfﬂ‘z 3 Vi) At+ At(zi ) Zt (5)
t+At — pi -
t

where Z; is a vector ofN independent variables with Gaussian dis-
tribution. Therefore, the SDF proposed by these autho@d¢siated
as

M a _ef(Rer%u’E*lu)Atf\/Eu(Z_%>/Zt
t+At —

(6)
and the estimator of this stochastic discount factor madigivien by:

]\/Jt — 6—(Rf+%ﬁ'§71ﬁ)At—ﬁ'§71(Rt—R) (7)
where,fi, R andY. are estimated by:

. R-R/
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1

~ 1 T _ —\/
=4 ;(Rt—R)(Rt—R) )

N

such thatR; = (R}, ..., RY) andR = L T | R,.

ii) Capital Asset Pricing Model — CAPM

Using the pricing equatiop; = E; [my112441], it is easy to show
that this implies a single-beta representation which is atpiivalent

to linear models for the discount factot; ; = a + bR, ++1, Where

R, 1+1 1s a factor relative to the market risk. Therefore, assuming
the unconditional CAPM, the SDF is a linear function of manie
turns. For instance, in the U.S. economy, in order to implentiee
CAPM, for practical purposes, it is commonly assumed thatréi
turn on the value-weighted portfolio of all stocks listedtba NYSE,
AMEX, and NASDAQ is a reasonable proxy for the return on the
market portfolio of all assets of the U.S. economy.

iiii) Araujo et al.(2006)

An estimator for the stochastic discount factor within aglagata
context is proposed by Araugt al. (2006). This estimator assumes
that, for every assete {1,..., N}, the vector proces§ln(M;R;)}

is covariance stationary with finite first and second momentsad-
dition, under no arbitrage and some mild additional condgj they
show that a consistent estimator for a positive SHs given by:

M, ( R’ ) (10)
t — e E—————
+ 311 R{ARE

1
whereR/! = £ V| Ry andR{ =TIY | R, ¥ are respectively the
cross-sectional arithmetic and geometric mean of all greggns.
Therefore, this nonparametric estimator depends exélyson ap-
propriate means of asset returns that can easily be impteaién

3The stochastic discount factor (SDF) estimator proposedayijo et al. (2006) is
fully non-parametric, within a panel-data framework, ahdsia function of asset-return
data alone. To obtain equation (10), the authors start widbreeral Taylor Expansion of
the pricing equation (1) in order to derive the determinaifitse logarithm of returns, once
they impose the moment restriction implied by (1). The iffamattion strategy employed
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3. Multifactor Pricing Models

A benchmark for the development of asset pricing modelsdasatbrk
of Sharpe (1964), which proposed the well-known CapitaleA$¥icing
Model (CAPM). The CAPM approach is based on a single factexpain
different return series and, despite its simplicity, qoiten does not exhibit
a good fit to real data. In this sense, Ross (1976) proposeditdattor
approach based on “no arbitrage” assumptions to explaimreeries, re-
sulting in the so-called APT (Arbitrage Pricing Theory) nebdAfterward,
Fama & French (1993) suggested the 3-factor model, basechdketand
firms characteristics, with the aim of improving the fit touret data and
capture market anomalies. Based on the “momentum” factdegédeesh
& Titman (1993), the 4-factor model is later proposed by @arfl1997).

More recently, Grinblatt & Titman (2002) divides the factarodel
literature into three main categories: (i) factors deriiemn macroeco-
nomic variables (e.g., CAPM, ICAPM - Intertemporal Capiaiset Pric-
ing Model (see Cochrane (2001, p.166) for further detail§)) factors
based on firm attributes; and (iii) factors based on stasisfprocedures.
In this work, we ground the analysis on categories (ii) afi}l lfiy using
the Fama-French (standard and extended) factors andgaimtmponent-
based factors to replicate return series. Nonethelesswibith mentioning
that different approaches could also be employed to gemeréficial re-
turns from multifactor models (see Campletlkal. (1997, p.219) for a good
survey).

We start investigating the APT model of Ross (1976) in ordeuse
a multifactor pricing model to reproduce artificial assetures. Con-
sider a K-factor model from a set of observed gross returns
Ry = (R, Rot, .., Rve)'

K
Ry =ai+ Y XpBik+ew, t=1,2,..T (11)
k=1

in which K is the total number of common components or factds;.

to recover the logarithm of the SDF relies on one of its basiperties: the SDF can be
interpreted as a “common feature”, in the sense of Engle &idkbv£1993), of every asset
return of the economy. Thus, under mild regularity resoitd (e.g. absence of arbitrage
opportunities) on the behavior of asset returns, the astiheat the SDF as a stochastic pro-
cess and build a consistent estimator for it, which is a grfyshction of the arithmetic and
geometric averages of asset returns alone, and does natddepany parametric function
used to characterize preferences.
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Factor models summarize the systematic variation offtedements of the
vector R; using a reduced number &f factors. The expected return-beta
expression of a factor pricing model is:

K
E(R)=v+ Bigphe+e, i=12_.N (12)
k=1

where)\;, is interpreted as the price of theth risk factor.

Fama and French constructed factors and developed thagritodel
that combined these factors to explain the average of stetckns. They
evidenced that some factors can (relatively well) explaie average of
stock returng. They showed that, besides the market risk, there are other
important related factors, such as size, book-to-marki, remomentum
and leverage, among others, that help explain the averdagmria the
stock market. The authors mentioned that these factorsdesd related
to economic fundamentals and these additional factors tinfeglite well)
help to understand the dynamics of the average return. Viderce has
been demonstrated in subsequent works and for differecit atarkets (see
Gaunt (2004) and Griffin (2002) for a good review).he main three fac-
tors, described below, are the SMB, HML and RM.

(i) The SMB Small Minus Big factor is constructed to measure the
size premium. In fact, it is designed to track the additioe&lirn that
investors have historically received by investing in seookcompa-
nies with relatively small market capitalization. A pog#iSMB in
a given month indicates that small cap stocks have outpeddithe
large cap stocks in that month. On the other hand, a negalii@ S
suggests that large caps have outperformed.

(i) The HML (High Minus Low factor is constructed to measure the
premium-valugrovided to investors for investing in companies with
high book-to-market values. A positive HML in a given montlys
gests that “value stocks” have outperformed “growth stbakshat

“Indeed, all the results of this paper confirm that the modélashia and French better
explains the average return of stocks in comparison to theMZ Model.

SHowever, this finding is not a consensus in the literaturer iRstance, Daniel &
Titman (2012) argue that conditional models based on switbriacan be rejected at high
levels of statistical significance when properly re-exagdiby more powerful specification
tests.
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month, whereas a negative HML indicates the oppdsite.

(i) The Market factorRM = Rj; — Ry is the market excess return in
comparison to the risk-free rate. For example, in the U.8nemy,
the RM can be proxied by the value-weighted portfolio of &dicks
listed on the New York Stock Exchange (NYSE), the Americacist
Exchange (AMEX), and NASDAQ stocks (from CRSP data) minus
the one-month Treasury Bill rate.

Considering these three factors, the factor model for eepeeturns is
given by:

E(Ry)— Ryt = Bim [E(Ruy) — Ryt + BisE(SMB,)  (13)
+ BanBE(HMLy), ie€{l,..,N}

where the betas;,,, 8;s andj;;, are slopes in the multiple regression (13).
Hence, one implication of the expected return equation efhinee-factor
model is that the intercept in the time-series regressidh i€lzero for all
assets:

Rit — Ryt = Bim RMy + Bis SM By + Bin HM Ly + €4 (14)

where RM; = (Ry¢ — Ryy). Using this criterion, Fama & French (1993,
1996) find that the model captures much of the variation iretrerage re-
turn for portfolios formed on size, book-to-market ratialather price ra-
tios. The Fama and French approach is (in fact) a multifantmitel that can
be seen as an expected Batpresentation of linear factor pricing models
of the form:

E(Rz) :’Y+ﬁim)\m+ﬁi3)\s+ﬁih)\h+€ia XS {1,,N} (15)

®Notice that, in respect to SMB, small companies logicallg expected to be more
sensitive to many risk factors, as a result of their rel&ivendiversified nature and also
their reduced ability to absorb negative financial shockstt@ other hand, the HML factor
suggests higher risk exposure for typical value stocks mparison to growth stocks. See
Perez-Quiros & Timmermann (2000), Cochrane (2001, p.44tl) Marinelli (2011) for
possible interpretation of such factors.

"The main objective of the beta model is to explain the variath terms of average
returns across assets.
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By running this cross sectional regression of averagenstan betas,
one can estimate the parameters X,.., \s, A\;). Notice thaty is the in-
tercept and\,,,, As and )\, are the slope in this cross-sectional relation.
addition, the 3;,,,, 8;s and;;, are the unconditional sensitivities of th¢h
asset to the factofs Moreover, 3,5, for somej € {m, s, h}, can be inter-
preted as the amount of risk exposure of asgetfactorj, and\; as the
price of such risk exposure.

On the other hand, one can use factors different from the Faeach
approach to help explaining the variation of cross-sectissets. An inter-
esting example is the statistical technique known as fatatysis, which
has been used to estimate factors from a huge quantity of eetsens.
Factor analysis explains the covariance relationshipsngnaonumber of
observed variables in terms of a much smaller number of wreed vari-
ables, termed factors, which reduces the dimensionaliti@problem. In
other words, this approach allows one to identify a smalb$etrthogonal
unobservable factors by summarizing all the informationtaimed in the
original dataset (see Tucker & MacCallum (1993) and Johi&sw@vichern
(1992) for further details). The factor analysis techniguplied to gross
return seriesk;; involves the following model:

n

J
Ryt = p; + ZLi,ij,t + vt (16)
7j=1
whereJ is the number of factors adopted, is the unconditional mean of
the gross returnsl; ; represents the factor loading (i.e., the contribution
of each return to the variation of each factaF),, is the j-th factor and
v; IS an error term with zero mean and finite variance. Therefoyaus-
ing principal component analysis to estimate, for examitiege factors,
provided that the first factor along, ; accounts forz percent of the total
variance, whereas the secorig () and the third £3 ;) ones account foy
andz percent of the total variance, respectively, we have thaty > z.

4. Replicating Return Time Series

Now we construct hypothetical returns using the multifagidcing
models. We first estimate the beta parameters from a linetorfenodel.

8An unconditional time-series approach is used here. Théitional approaches to
test for international pricing models include those by Ber& Harvey (1994, 1999) and
Chanet al. (1992).
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Then, we replicate the returns by creating artificial seniagch mimic the

real world ones. Finally, based on the artificial returnsated through a
Monte Carlo simulation, we evaluate the SDF candidatesinvitiis con-

trolled setup.

A Controlled Environment to Simulate Portfolios

Since the objective of this paper is to provide a controliettis to eval-
uate SDF estimators, we now present a simple methodologgplcate
return series based on factor models. Given that a linetorfatodel ap-
proach is adopted to mimick the real world returns, we nowsoan the
methodology to replicate a vector of returns from a seXpf, factors.

The following K -factor model is given by:

K

Rip=ai+ Y  XerBik + i (17)
k=1

Following the approach of Ren and Shimotsu (2006), we firssity-
mate the beta parameters and collect the residyala order to compute
the respective sample covariances (here summarized bpvheance ma-
trix 2). This covariance matrix is used in the simulation exeresean
additional information to thé( factors. In this way, the simulated returns
can account for both the factors and the model-based résiduariance
structure. Second, we run the following cross-sectiongtegsion (i.e., a
standard one-dimension regression aleng {1,..., N}, which refers to
the assets index):

M=

E(R;)) =a+ ) (E(Xik) +m)Bik + wi (18)

i

1

which gives the estimates of the risk-free ratand the factor-mean ad-
justed risk prices);, based on: (i)3; , estimated in (17); (ii) the sample

T
ZRit fori = 1,...,.N
t=1

T
and E(X; ;) = %ZXW for k = 1,..., K; and (iii) the residual of the
=1

proxies forE(R;) andE(X, ), thatis,E(R;) = =

t=
regressionu;. After that, we considered random factors based on normal
distributions with mean equal to the sample mean and vaiagoal to the
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their sample varianc®. 10 Finally, we create artificial return serigs;,,
based on the following equation:

K
:a Zth+77k ﬁzk"’ezt (19)
k=1

in which X ;, are the adopted factorg, = Q'/%¢;, ande;; are drawn from
independent standard normal distributions. Notice thatesF (e;c),) =
I, it follows by construction thaf(g;.¢},) = €. Considering the error
structure in the multifactor model, the set of asset spahkeéat, reason-
ably) the return space.

The objective here is to make the mean and variance of siatllat
turns as close as possible to the assumed factor models. extestep
is to estimate the SDFs based on the artificial return sétjeand further
evaluate (to compare the competing SDF estimators) thesughrHansen-
Jagannathan distance and a goodness-of-fit statistichvalnécdiscused in
the next section. It is worth mentioning that we repeat thevipus steps
for an amount of: replications in order to complete the Monte Carlo sim-
ulation. For each replication, we split the set/éfgenerated assets into
two groups (with the same number of time series observatigtiisn each
group). Firstly, consider an amount &f < N assets to estimate the SDF
candidates (henceforth, this first group of assets will beodenatedin-
samplg¢. Based on the estimated SDF proxies and using the remaining
(N — N) assets, used to generate the-of-sampleexercise (based on the
approach of Fama & MacBeth (1973)), we compute the goodoiefis-
statistic in order to compare the performance of each SDHidate and
the Hansen-Jagannathan distance. In other words, we w&nbt how
well the proxies are carried on when new information is ctersd.

Pricing Error of stochastic discount factor models

i) Hansen and Jagannathan distance

In the asset pricing literature, some measures are suggest®m-
pare competing asset pricing models. The most famous mee@sur

°In order to consider more volatile factors we use (insteathefsample variance) an
estimative of the interpercentil distance amongaheeal assets.

991 general, the factors have low correlation, in partigulae factor provided by the
factor analysis are ortogonal by construction. Therefaedo not consider cross correla-
tion between factors.
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the Hansen and Jagannathan distance, which is employers ipath
per to test for model misspecification and compare the padoce
of different asset pricing models.

The Hansen & Jagannathan (1997) measure is a summary of the
mean pricing errors across a group of assets. As shown byeHans
and Jagannathan, the HJ-distance= min,,c ¢ ||y — m/||, defined

in the L? space, is the distance of the SDF mogeb a family of
SDFs,m € M, that correctly price the assets. In other interpretation,
Hansen and Jagannathan show that the HJ-distance is tivegpaie

ror for the portfolio that is most mispriced by the undertyimodel.
The pricing error can be written by, = E} (my1Rit41) — 1.
Notice, in particular, thaty; depends on the considered SDF, and
the SDF is not unique (unless markets are complete). Thtisr-di
ent SDF proxies can produce similar HJ measures. In thisesens
even though the investigated SDF models are misspecifiqutaiy
tical terms, we are interested in those models with the lowds
distancet! In the special case of linear factor pricing models, the
HJ-distance takes the following form (see Ren & ShimotsuWD620
for details):

H.J(8) = [E(wi(0))G E(wi(5))] (20)
wherew,(§) = R;X[0 —1n; G = E(R:R}) and X, is a factor vector
including a column of 1's.

i) Goodness-of-fit statistidVe also use a pricing error statistic to com-
pare stochastic discount factor models, which is derivedhfthe
following equations, as mentioned by Cochrane (2001, p.81)

ap=Ei[my 1 Riga] —1; i=1,...,N (21)

"Nonetheless, several papers report that specificatios bested on the HJ-distance
overrejects correct models too severely in commonly usedpka size (e.g., Ahn &
Gadarowski (2004)). On the other hand, Daniel & Titman (30drgues that conditional
versions of the CAPM, CCAPM and alternative factor modetsaiten tested with size and
book-to-market sorted portfolios, and specification tesige a propensity to support these
models, in the sense that the tests fail to reject the nulbtihgsis that the return data are
consistent with the model. According to the authors, givenlow pair wise correlations of
the related factors (which generate very different estsaf expected returns of individual
assets) the models cannot all be correct. Therefore, tteedesiot fail to reject the models
because they are all correct, but rather because the testséry little power to reject them.
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Note that (theoretically) the pricing error should be nué.(a; = 0

for Vt). However, in practice, due to finite sample data and passibl
model (mis)specification, in general, we have thatt 0. Nonethe-
less, the statistical significance af can be used as a model spec-
ification test. In the language of excess returns, we inyatdithe
pricing errors through the distance between actual andgteedre-

turns. Letk <R§7t> =F (Ri,t - R{ ) express the expected excess

returns. For notation simplification we denofé(Rgt) simply by
E (R®). From Cochrane (2001, p.96) we have tlatmR¢) = 0.
Now, recall thatEl (mR®) = E(m)E (R®) + cov(m, R¢). Thus, it
follows that:

cov (m, R°)
E(R)=———"1—~ 22
(R) === 5 0 (22)
The pricing error based on excess returns (now labellefl-dsan be
defined by

cov (m, R°)
Pr = FE E(R®) — | ———+2 23
' (m)[( ) ( E (m) H )
1
= 7 * (actual mean excess return — predicted mean excess yeturn

whereE (R¢) is computed from actual mean excess return (i.e., estimated
through the sample average &f, along the time dimensignand

—% is the mean excess return predicted by equation (22), intwhic
cov(m, R®) is estimated via the sample covariance betweemd R¢. Let
J\ZS be the SDF proxy provided by the modeh a family S of asset pricing
models. Therefore, based on equation (23), the suggesté® §ample)
goodness-of-fit statistic is based on the sum of squareihgr&rrors Pr

(see (Cochrane, 2001, p.81)) for further details):

N T 7 2
1 1 .\ Ccou(Mf, Rf))
o3 (3 - T ses
t=1 T t=1 t

In addition to the previous statistic, the artificial gsm also tested
in an out-of-sample setup. In this sense, the s¢f\of- N) assets are used
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to generate theut-of-samplereturns in order to compute the Hansen and
Jagannathan distance. That is, we want to know how well tHe [BDxies
are carried on when new information is considered.

5. Empirical Application

In order to present our methodology, we investigate theoperdnce of
three different SDF estimators described in section 3, whre the Brow-
nian motion pricing, the linear stochastic discount factothe CAPM and
the SDF proposed by Araujet al. (2006). We also estimate the SDF of
Hansen and Jagannathan as a benchmark.

5.1 Data

The U.S. portfolios dataset was extracted from the Kennetlré&ch
websité? and the asset return of the Standard & Poor’s 500 stock-rharke
was obtained from the Yahoo Finance web site. The U.S. Tred3ill
return is used as a measure of the risk-free asset. The ipampibrtfolios
used in competing SDFs models are described as follows:

i) 25 portfolios which contain value-weighted returns foe tintersec-
tions of 5 ME portfolios and 5 BE/ME portfolio's.

ii) 48 industrial portfolios which contain value-weighteeturns for 48
industry portfolios.

iii) 96 portfolios which contain value-weighted returng the intersec-
tions of 10 ME portfolios and 10 BE/ME portfolios.

For a robustness check, we consider three distinct sampteipe

i) 280 observations corresponding to the period of Febrd@g&7 to
July 2010.

i) 350 observations corresponding to the period of MarcB2l® July
2010.

iii) 500 observations corresponding to the period of May 996 July
2010.

2More information about data can be founchititp: //mba. tuck.dartmouth. edu/
pages/faculty/ken.french/data_library.html. For other economies, the factors
can be constructed as showed in Fama & French (1992, 1993).

13ME is market cap at the end of June. BE/ME is book equity (RetarMonthly).
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In order to construct the set of factors based on Factor AigalFA)
we use monthly S&P500 stock retutfgovering the period from February
1987 to July 2010. Moreover, we only consider companies fuclvdata
from S&P500 are available throughout the whole considesgtbg, which
reduces the cross-section sample frdm= 500 to N = 263. This data
reduction comes from the fact that the S&P500 dataset isalahbed (i.e.,
it is not based on a fixed set of companies throughout timeedime firms
that compound the index are revised in a frequent B3siwhich makes it
difficult to deal with largeN andT" dimensions, such thd\¥ represents a
fixed set of companies for a long span of time peri@dsThus, although
the aggregate S&P500 index is available much far before ,188h the
set of N = 500 firms, which compound the index, less than 150 (surviving
companies) would be available to construct factors in tise cd7" = 350.
Since the larger is the set of considered companies the leettee motiva-
tion to employ the principal component technique, we hawidgel to only
investigatel’ = 280 in this case.

5.2 Factors

We use the three factors construted by Fama and French,hbdisdt
set of factors is: (i()X; ={RS},; SM B,; HM L.}. Provided that the three-
factor model of Fama & French (1993, 1996) is not an unaninagpsoach
in the literature, we also investigate an extend versiombluding momen-
tum, M omy, short-term reversaiT_Rewv; and long-term reversdlT _Reuv;
factors, in order to increase the fit of the factor model todhtial data
(Farnsworthet al,, 2002, see). For example, the momentum factor is de-
fined as the average return on the two high prior return garfoninus the
average return on the two low prior return portfolios, arelghort-term and
long-term reversal factors are defined as the average retutime two low
prior return portfolios minus the average return on the tgh Iprior return

14The S&P500 index is based on the stock prices of 500 compémiestly from the
United States) selected by a committee, in order to be reptatve of the industries in
the U.S. economy. Nonetheless, the index nowadays inclademndful set of non-U.S.
companies (15 as of May 8, 2012). This group includes botméoly U.S. companies
that have reincorporated outside the United States, asasdifms that have never been
incorporated in the U.S.

5In order to keep the S&P 500 index reflective of American stodke constituent
stocks need to be changed from time to time. For instanceseitis to take into account
stocks liquidity as well as corporate actions such as stplitssshare issuance, dividends
and restructuring events such as mergers or spinoffs.
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portfolios. In addition, the (i) short-term reversal fagt@) the momentum
factor and (iii) the long-term reversal factor are basedmwipus (i)t — 1;
(i) t — 2tot — 12 and (iii) t — 13 to ¢ — 60 months, respectivelif This
way, the second set of factors is given by i) = { R5},; SM By; HM Ly;
Momy; ST_Revy; LT _Rev,}. In addition to the Fama and French factors
we also construct a new set of factors, based on purelytgtatigrounds,
using assets from the S&P500 stock market.

We use the factor analysis techniiéo construct a set ok factors.
In this setup, we study a set of factors generated by the rfactalysis
K = 3, (i) X¢ = {F1 4 Fay; F34}. In summary, we study three set of
factors: (i) The Fama and French factoXs = {RS},; SM By; HM L},
(i) The extendend Fama and French selip= {RS},; SM By; HM Ly;
Momy; ST_Revy; LT_Rev }; and (iii) The Factor Analysis set of factors
Xt = {F1; Foy; F )

5.3 Results

Based on a given set of observed gross returns, we constivionte
Carlo simulation in order to replicate the observed retams further eval-
uate the competing SDF estimators. Then, we estimate thhasttic dis-
count factors based on the returns generated from the fawdels, and
repeat the mentioned procedure for an amount ef 5,000 replications.
Some descriptive statistics of the generated SDFs are ntegsén Ap-
pendix (table A.1). Finally, the evaluation of the SDF pesxis conducted
and the simulation results are summarized by goodness-stafistic and
the HJ-distance, which are averaged across all replicatidfe denote the
SDF proxies, estimated in each replication, as model8 andC' to Araujo
et al. (2006), Brownian Motion and CAPM, respectively. In additighe
stochastic discount factor implied by the Hansen & Jagdrama(1991)
setup is estimated as a benchmark, denoted by' H.J. In Figure 1, the
estimates of the SDF proxies are shown for one replicatioth@fMonte
Carlo simulation, withNV' = 96 andT = 280. A simple graphical inves-
tigation reveals that the Brandt al. (2006), and the Araujet al. (2006)
proxies are, respectively, the most and less volatile owbg;h is a result
confirmed by the descriptive statistics of Table A.1 (in Apge).

3ee more details in the Kenneth French web Sitep: //mba. tuck . dartmouth.
edu/pages/faculty/ken.french/data_library.html
17See Stock & Watson (2002) for a good reference on Principaif@ments.
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7 1 ———SDF CAPM
I EEEEE SDF Brownian Motion
SDF Araujo, Issler and Fernandes

0 50 100 150 200 250 300

Figure 1
SDF models withV = 96 andT" = 280

Figure 1 shows one replication out of the total amount of G, @pli-
cations. We adopd = 96 (56 in-sample and 40 out-of-sample) assets and
three factors obtained from the factor analysis.

We show in Figure 2 and Figure 3, for illustrative purposes fmean
versusvariance” plot, the real returns and one replication of timeus
lated returns for the three factor RM, SMB and HML setup of Baand
French and also the six extended factors Rm, SMB, HML, MonmR&T
and LTRev of Fama and French, respectively. These pictwieereced
that the covariance structure of the artificial return isspreed.
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Figure 2
Mean and Variance of real and simulated returns for threterfdM, SMB and HML of Fama and
French
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Figure 3
Mean and Variance of real and simulated returns for six edrfactor Rm, SMB, HML, Mom,
STRev and LTRev of Fama and French
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Table 1
Monte Carlo simulation results faf = 280

T =280 and three factor RM, SMB and HML of Fama and French

N =25 (15 In-sample, 10 out-of-sample)

Mean HJ Median HJ S.E.HJ HJReal S.E.HJ MeanPls Median P1s S.FP1ls
A 0,20322  0,20266 0,06048),14178 0,05631 0,01679 0,00955 0,01911
B 0,15263  0,15233 0,05374 0,22749 0,067190,00131 0,00114 0,00070
C 0,15542  0,15563 0,13375 0,22257 0,05566 0,07160 0,0315711082
SDFHJ 0,06770 0,06539 0,06125 0,18428 0,05532 0,10545 210110 0,04035

N = 48 (28 In-sample, 20 out-of-sample)
A 0,11537  0,11348 0,05812 0,24065 0,05395 0,01931 0,0110602201
B 0,10666  0,10439 0,04122 0,25291 0,05098,00122 0,00109 0,00062
C 0,09132  0,08950 0,10372 0,23851 0,05257 0,03519 0,02749  0,03038
SDFHJ 0,06607 0,06435 0,05662 0,23008 0,05406 0,04282 0104 0,01859

N =96 (56 In-sample, 40 out-of-sample)
A 0,21815  0,21728 0,059970,37362 0,05882 0,01835 0,01033  0,02108
B 0,17599  0,17377 0,05642 0,49854 0,0901¢,00110 0,00099 0,00049
C 0,16200 0,16170 0,10585 0,38644 0,05400 0,05949 0,03514  0,06925
SDFHJ 0,09137 0,08943 0,05988 0,43934 0,07279 0,08423 32308 0,02348

T =280 and six extended factor Rm, SMB, HML, Mom, STRev and LTRev

of Fama and French

N =25 (15 In-sample, 10 out-of-sample)

Mean HJ Median HJ S.E.HJ HJReal S.E.HJ Mean P1s Median P1s S.FP1s
A 0,24604  0,24495 0,06098,14178 0,05631 0,01782 0,01076  0,01948
B 0,16376  0,16107 0,05751 0,22749 0,067190,00152 0,00134 0,00091
C 0,22090  0,21859 0,12054 0,22257 0,05566 0,06091 0,0308309060
SDFHJ 0,15695 0,15584 0,06310 0,18428 0,05532 0,07114 09906 0,04897

N =48 (28 In-sample, 20 out-of-sample)
A 0,14219  0,13912 0,05650 0,24065 0,05395 0,02108 0,0132Q002289
B 0,11766  0,11550 0,04364 0,25291 0,050960,00122 0,00109 0,00062
C 0,13268  0,12894  0,09094,23851 0,05257 0,03981 0,02776  0,03994
SDFHJ 0,09179 0,08908 0,05651 0,23008 0,05406 0,03184 8B202 0,01810

N =96 (56 In-sample, 40 out-of-sample)
A 0,25448  0,25208 0,0612%,37362 0,05882 0,01877 0,01162  0,02004
B 0,19560  0,19407 0,05803 0,49854 0,090140,00101 0,00090 0,00049
C 0,23013  0,22571 0,09063 0,38644 0,05400 0,05024 0,0311105618
SDFHJ 0,17633 0,17486 0,06255 0,43934 0,07279 0,03938 78003 0,01845

T = 280 and three factor obtained of the S&P500 using the factor rhode

Eigenvalue: lambdal = 0.6473, lambda2 = 0.1482 and lambda30-0961

N =25 (15 In-sample, 10 out-of-sample)

Mean HJ Median HJ S.E. HJ HJReal S.E.HJ Mean P1s Median P1s S.FP1s
A 0,09758  0,09317 0,06029,14178 0,05631 0,02719 0,01716  0,03041
B 0,08595  0,08511 0,02903 0,22749 0,067190,00044 0,00038 0,00029
C 0,11200  0,09633 0,08156 0,22257 0,05566 0,05503 0,030400788&4
SDFHJ 0,03172 0,02796 0,06140 0,18428 0,05532 0,05253 7@904 0,02887

N =48 (28 In-sample, 20 out-of-sample)
A 0,10767  0,10343 0,05922 0,24065 0,05395 0,03785 0,02924033108
B 0,09722  0,09615 0,03715 0,25291 0,050960,00129 0,00118 0,00057
C 0,12123  0,11018 0,0717®,23851 0,05257 0,06573 0,04574  0,06613
SDFHJ 0,03129 0,02901 0,05775 0,23008 0,05406 0,05209 0®705 0,02020

N =96 (56 In-sample, 40 out-of-sample)
A 0,14125  0,13917 0,05918,37362 0,05882 0,03074 0,02020  0,03127
B 0,13851  0,13744 0,05076 0,49854 0,090140,00085 0,00078 0,00037
C 0,16247  0,14041 0,07646 0,38644 0,05400 0,05587 0,0315806907
SDFHJ 0,04534  0,04315 0,05849 0,43934 0,07279 0,07650 5@607 0,01893
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Table 2
Monte Carlo simulation results faf = 350

T =350 and three factor RM, SMB and HML of Fama and French

N =25 (15 In-sample, 10 out-of-sample)

Mean HJ Median HJ S.E.HJ HJReal S.E.HJ Mean Pls Median P1ls S.FP1s
A 0,23286 0,23146 0,05425 0,14267 0,04966 0,01535 0,0093801603
B 0,17224 0,17237 0,05039 0,23868 0,07222 0,00155 0,00131 0,00099
C 0,18004 0,18316 0,13294 0,24453 0,04906 0,07968 0,0341812634
SDF HJ 0,07657 0,07475 0,05466 0,18899 0,05060 0,13368 09013 0,04479

N = 48 (28 In-sample, 20 out-of-sample)
A 0,13860 0,13758 0,0518D,21400 0,05124 0,01898 0,01158 0,01985
B 0,11845 0,11604 0,04229 0,22224 0,04710,00115 0,00103 0,00055
C 0,10382 0,10303 0,11297 0,21491 0,04884 0,05253 0,04754  0,03790
SDFHJ 0,08122 0,07960 0,05102 0,19248 0,04931 0,06186 94405 0,02211

N =96 (56 In-sample, 40 out-of-sample)
A 0,23969 0,23845 0,0539D,32353 0,05484 0,01630 0,00983  0,01775
B 0,18914 0,18713 0,05357 0,53998 0,18199,00115 0,00101 0,00059
C 0,17707 0,18152 0,11039 0,37562 0,04943 0,06561 0,03737  0,07805
SDF HJ 0,09292 0,09136 0,05391 0,40840 0,06022 0,10352 2@®110 0,02463

T =350 and six extended factor RM, SMB, HML, Mom, STRev and LTRev

of Fama and French

N =25 (15 In-sample, 10 out-of-sample)

Mean HJ Median HJ S.E.HJ HJReal S.E.HJ MeanPls Median P1s S.FP1ls
A 0,26776 0,26787  0,05449,14267 0,04966 0,01655 0,01032  0,01688
B 0,16417 0,16161 0,05212 0,23868 0,072220,00145 0,00113 0,00119
C 0,23406 0,23403 0,12390 0,24453 0,04906 0,07256 0,0347611686
SDFHJ 0,14746 0,14606 0,05651 0,18899 0,05060 0,09304 38408 0,05372

N =48 (28 In-sample, 20 out-of-sample)
A 0,13698 0,13521 0,05138,21400 0,05124 0,02037 0,01327  0,02073
B 0,11827 0,11623 0,04054 0,22224 0,04710,00111 0,00099 0,00055
C 0,11786 0,11499 0,08435 0,21491 0,04884 0,05229 0,04239  0,04330
SDFHJ 0,08261 0,08097 0,05116 0,19248 0,04931 0,05656 3®&705 0,02311

N =96 (56 In-sample, 40 out-of-sample)

A 0,26968  0,26850 0,05393),32353 0,05484 0,01703 0,01070  0,01763
B 0,19361  0,19239 0,05204 0,53998 0,181990,00076 0,00068 0,00039
C 0,24024  0,23875 0,09201 0,37562 0,04943 0,05351 0,0330]062€9

SDFHJ 0,16910 0,16821 0,05573 0,40840 0,06022 0,04592 3604 0,01937

Note: A is the SDF of Araujet al. (2006); B is the SDF over the Brownian motion and C the SDF
provided by the CAPM.
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Table 3
Monte Carlo simulation results faf = 500

T =500 and three factor Rm, SMB and HML of Fama and French

N =25 (15 In-sample, 10 out-of-sample)

Mean HJ Median HJ S.E.HJ HJReal S.E.HJ Mean Pls Median P1ls S.FP1s
A 0,18057 0,17966 0,04614,12732 0,04309 0,00975 0,00622  0,01024
B 0,11290 0,11134 0,03662 0,15503 0,048200,00103 0,00092 0,00059
C 0,14085 0,14131 0,12610 0,22733 0,04434 0,05240 0,0214408791
SDF HJ 0,05752 0,05426 0,04624 0,14350 0,04751 0,04782 44704 0,02345

N = 48 (28 In-sample, 20 out-of-sample)
A 0,10029 0,09926 0,04383,19862 0,04475 0,01082 0,00649  0,01200
B 0,09913 0,09777 0,02967 0,20959 0,0441@,00104 0,00097 0,00042
C 0,06458 0,06214 0,09331 0,20257 0,04237 0,03884 0,03525  0,02789
SDF HJ 0,04808 0,04684 0,04337 0,19223 0,04456 0,05284 08805 0,01923

N = 96 (56 In-sample, 40 out-of-sample)
A 0,20248 0,20262 0,0458@,28415 0,04255 0,00999 0,00625 0,01010
B 0,12775 0,12642 0,03779 0,40803 0,151360,00088 0,00083 0,00034
C 0,15384 0,15693 0,11070 0,32715 0,04116 0,04291 0,0202405996
SDFHJ 0,07317 0,07222 0,04534 0,29522 0,05427 0,04298 1804 0,01629

T =500 and six extended factor RM, SMB, HML, Mom, STRev and LTRev

of Fama and French

N =25 (15 In-sample, 10 out-of-sample)

Mean HJ Median HJ S.E.HJ HJReal S.E.HJ Mean Pls Median P1ls S.FP1s
A 0,21386 0,21426 0,046110,12732 0,04309 0,01053 0,00659  0,01119
B 0,13358 0,13004 0,03993 0,15503 0,048200,00122 0,00109 0,00065
C 0,19232 0,19093 0,11628 0,22733 0,04434 0,04769 0,0197108187
SDFHJ 0,12292 0,12290 0,04724 0,14350 0,04751 0,04147 5@003 0,02922

N = 48 (28 In-sample, 20 out-of-sample)
A 0,10404  0,10332 0,04419,19862 0,04475 0,01137 0,00731  0,01199
B 0,09503 0,09362 0,02752 0,20959 0,0441@,00092 0,00084 0,00038
C 0,08372 0,08120 0,07044 0,20257 0,04237 0,03583 0,02807  0,03068
SDFHJ 0,05752 0,05611 0,04401 0,19223 0,04456 0,04386 1@704 0,01862

N = 96 (56 In-sample, 40 out-of-sample)

A 0,24416  0,24287 0,04594,28415 0,04255 0,01054 0,00678  0,01041
B 0,16645  0,16565 0,04265 0,40803 0,151360,00095 0,00089 0,00036
C 0,22131  0,22034 0,08768 0,32715 0,04116 0,03500 0,02014044%8

SDFHJ 0,14907 0,14828 0,04704 0,29522 0,05427 0,02366 18902 0,01384

Note: A is the SDF of Araujet al. (2006); B is the SDF over the Brownian motion and C the SDF
provided by the CAPM.

Table 1 shows the results fér= 280 and the three sets of factors inves-
tigated. Initially considering the three Fama-FrenchdectandN = 25,
the mean and median HJ distateas well as the mean and mediarpof

18The standard error of the HJ-distance is estimated by a Néwagest (1987) HAC
procedure, in which the optimal bandwidth (number of lagsis5given by m(T") =
int(T'/?), whereint(.) represents the integer part of the argument, &nig the sam-
ple size. The adopted kernel used to smooth the sample aattaace function is given by
a standard modified Bartlett kerneli(j, m(T)) = 1 — [j/{m(T) + 1}]. See Newey &
West (1994) for an extensive discussion about lag selettioovariance matrix estimation,
and also Kan & Robotti (2009).
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statistic, indicates model B as the best one, closely fatbiy model C.
Nonetheless, it is worth mentioning that, in this case, #spective stan-
dard deviations (although computed across Monte Carlacegfmns) pro-
vide an indication that all HJ distances might be statifitidche same and
that the goodness-of-fit statistigs, might be indeed zero. On the other
hand, the HJ distance based on real data selects model A Eod8 and
N = 96, only the mean and median HJ distance selects model C, véherea
the goodness-of-fit statistjg s suggests again model B.

Considering the second part of results for the six extendada-French
factors, the mean and median HJ distance, as well gs fhetatistic, select
model B, which is a different result when considering reahdén the third
part of the results based on three factors generated viar facalysis based
on the S&P500 dataset, the results of all statistics agaiicate model B
as the best one, and suggest model A based on real data.

The results from Tables 2 and 3 point to the same findings argkn-
eral, the model ranking based on atrtificial returnsBis= C > A. It
should be highlighted that the SDF of Hansen-Jagannathardvie the
best one across the four presented SDFs, however, it is netdayed in
the “horse race”, since itis designed to generate an adeéliadistance, so
it is presented here only as a benchmark. For further detglrding these
findings, see Figures A.1-A.6 in Appendix containing, fdustrative pur-
poses, the histograms for the HJ distance and for the prairg-based
goodness of fit statistics;; of each SDF candidate estimator, based on
Fama-French factors and three considered Monte Carlo cwafigns: (i)
N =25, T = 280; (i) N = 48, T = 350; (ii) N = 96, T = 500.

Therefore, the nonparametric and fully data-driven modes Aften
selected only when considering real data, mainly when denisig higher
values of N andT’, which is a natural result since its performance increases
asymptotically as long as the sample si2ésl” increase. However, this
result is not robust when considering a kind of “reality dtidéa the sense
of White (2000) within a simulated framework produced to rngirasset
returns. In this case, model B is selected, since it prodac8®F with
statistical properties, such as volatility, which are tlesest to the HJ SDF
ones (see Table A.1). This feature has a direct influence eretbults for
the HJ distance. Regarding tpe statistic, although model B is again the
selected one, notice that (overall) the considered mo@eisigo exhibit a
pricing error that is statistically zero, if one considdrs standard deviation
of such statistic across all replications as a proxy for thedard error of
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this variable. Finally, model C is not selected in real dateg usually not
suggested in the simulated returns setup, which is a rdsgklg linked to
the hypotheses embodied in the CAPM framework (e.g., twm@enodel
and log utility function); revealing that such hypotheses iadeed not re-
flected in both real and artificial dat.

6. Conclusions

In this paper, we propose a methodology to compare diffestemhas-
tic discount factor models constructed from relevant mam@&®rmation.
Based on a multifactor approach, which is grounded on chexistics of
the firms in a particular economy, a Monte Carlo simulatioategyy is pro-
posed in order to generate a set of artificial returns thabiggrly compati-
ble with those factors. One feature of such methodologyaisttie compar-
ison directly relies on estimated stochastic discounbfatine series and
their ability to properly price asset returns. One advamiaighis approach
is to enable investigating the performance of different el®@dased not
only on a single realization of asset return series (i.al,data time series),
but also to provide a simulated setup with upite= 5, 000 replications of
real data in order to compare model performance in a muclibratataset.
This approach can mimic observed data features (e.g.,degpendence and
covariance structures) and, thus, provide a reality cheekaluate distinct
SDFs (White, 2000, see).

Therefore, the main contribution of this paper consists ofethodol-
ogy to compare distinct SDFs in a setup where a multifactpragzeh is
used to summarize a given economic environment, which id tsgen-
erate numerical simulations in which SDF proxies are coeybainrough
a goodness-of-fit statistic and the Hansen and Jagannatsi@ma®. An
empirical application is provided to illustrate our methtmty, in which
returns time series are produced from three set of factofseof).S. econ-
omy.

The main results based on real data quite often indicate@ker8odel
of Araujo et al. (2006). Its nonparametric setup and data-driven approach
lead to a performance improvement as long as the sample iszesse
(i.e., number of considered assets and time periods). Relests, this re-

%In addition, provided that simulated data comes from moteked on three (or six)
factors, it is not surprising that CAPM model, which is regtird to a single factor, does
not exhibit a good performance in comparison to multipledabased models of Brandt,
Cochrane and Santa-Clara, and Araujo, Issler and Fernandes
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sult is not robust when considering simulated datasetsmatiMonte Carlo
exercise. In this case, the SDF of Braetltal. (2006) seems to be the best
model, given that the Brownian motion hypothesis is ablecioegate SDF
dynamics with adequate statistical features, which argeclto the Hansen
and Jagannathan SDF. Finally, the CAPM derived SDF is nehafidi-
cated by the comparison exercise, since its restrictedthgpes, such as
the log utility function and single two-period model, seenbé rejected by
both real and simulated data.

Future extensions of this paper might also include the tiy&tion of
other SDF proxies as well as the adoption of distinct factioraddition, the
analysis of such models in other economies, such as devetmpemerg-
ing ones, might lead to distinct model recommendationsedéing on the
adequacy of each model’'s assumptions with respect to eliffenarket fea-
tures. For example, the empirical exercise could be extbtathe Brazil-
ian stock market. However, market specific features, suliqudity issues
and structural breaks, should properly be taken into addawrder to not
bias the results regarding the estimated SDFs. For instémeanerge in
2008 of the Brazilian stock market (Bovespa) with the BraailMercan-
tile & Futures Exchange (BMEY resulted in a liquidity break, due to the
sudden hike in market liquidity. A formal treatment on thésue (within a
factor modeling setup) would require, for instance, theafstummies and
tests for the hypothesis of a time series structural bregk, @ monthly fi-
nancial volume). In order to guide this possible route, spayers focused
on factor models and Brazilian data are worth mentioﬁi‘n&or instance,
Rayeset al. (2012) examine whether the Fama-French (FF) model, applied

20BM&FBOVESPA is a Brazilian company, created in 2008, thiioube integration
between the Sao Paulo Stock Exchange (Bolsa de Valoreaa®&1lo) and the Brazilian
Mercantile & Futures Exchange (Bolsa de Mercadorias e BsjurNowadays, it is the
most important Brazilian institution to intermediate g@gunarket transactions and the only
securities, commodities and futures exchange in Brazdlslh acts as a key driver for the
Brazilian capital markets.

215ome related papers are the following: (i) Neves & Leal (300aich investigate
the relationship between GDP growth and the effects of sizkele and moment within a
FF setup; (ii) Malaga & Securato (2004) corroborate theéstieal significance of the three
FF factors regarding return forecasts; (iii) Lucena & Pi(2005) revisit the FF model for
Brazilian data and adapt it to include parameters from AREGARCH models; (iv) Mussa
et al. (2007) investigate an augmented four-factor model (inolgignomentum), conclud-
ing that the 3 original FF factors are significant for the migjoof considered portfolios;
and (v) Musseet al. (2009) test the CAPM, 3-factor and 4-factor models, corialgidn
respect to the FF setup that the HML effect is quite signifiéanBrazilian stock market.
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to investment portfolios with variable weightings, stidptains the returns
in view of the structural break in the Brazilian stock marketerms of
its liquidity.?> Nonetheless, extensions to the presented empirical egerci
remain an open route for future research.
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Appendix

Table A.1
Descriptive statistics of the SDF proxies

Three factor Rm, SMB and HML of Fama and French
N=25 and T=280

Araujo  Brownian Motion CAPM HJ
Mean 0,9942 0,9269 0,9855 0,9872
Median 0,9888 0,7504 1,0254 0,9866
Maximum 1,2614 9,4122 1,9549 3,1385
Minimum 0,8783 0,1295 -0,9218 -0,9362
Std. Dev 0,0473 0,7437 0,3735 0,5503
Skewness 1,1698 4,9300 -0,8163 0,0618
Kurtosis 7,7475 50,1766 5,5646 3,6060
Freq. Jarque-Bera  0,0000 0,0000 0,0000 0,5000

Six factor Rm, SMB, HML, Mom, STRev and LTRev of Fama and French
N=48 and T=280

Mean 0,9919 0,9234 0,9847 0,9867
Median 0,9867 0,7516 0,8718 0,9947
Maximum 1,2534 8,1673 7,5042 2,7757
Minimum 0,8750 0,1341 -2,8876 -0,7856
Std. Dev 0,0470 0,7124 1,3491 0,5371
Skewness 0,9917 4,0046 0,0000 -0,0558
Kurtosis 7,4733 39,6145 5,5646 3,3564
Freq. Jarque-Bera  0,5000 0,0000 0,0000 0,5000

T = 280 and three factor obtained of the S&P500 using the factamodel.
Eigenvalue: lambdal = 0.6473, lambda2 = 0.1482 and lambda30-0961.
N=96 and T=280

Mean 0,9945 0,9206 0,9856 0,9877
Median 0,9862 0,7757 1,0084 0,9824
Maximum 1,2764 4,3482 1,3458 2,1626
Minimum 0,8633 0,2451 0,1677 -0,3410
Std. Dev 0,0564 0,5392 0,1619 0,3870
Skewness 1,0957 2,0823 -1,0912 -0,0066
Kurtosis 7,3363 10,5206 5,9640 3,2155
Freq. Jarque-Bera  0,5000 0,0000 0,0000 1,0000

Notes: These statistics are computed in-sample. The gégerstatistics are
averaged across the= 5, 000 replications.
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Figure A.1
Histogram of the HJ distance fo¥ = 25 andT = 280
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Histogram of the HJ distance fo¥ = 48 andT" = 350
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