
Nonparametric option pricing under
Beta-t-GARCH process with dynamic
conditional score

Manoel F. de S. Pereira†

Alvaro Veiga‡

Abstract One of the advantages of nonparametric option pricing methods is that they
only require a set of future price scenarios, eliminating the need for an explicit risk-
neutral model for the price of the underlying asset. In this paper, we explore the score-
driven Beta-t-GARCH volatility model, introduced by Harvey (2013), to generate the
price scenarios necessary for a nonparametric option pricing method based on the em-
pirical Esscher transform, as proposed by Pereira and Veiga (2017). An experiment was
conducted using real data from the Brazilian Stock Market, comparing observed op-
tion prices across different strike prices and maturities with the prices produced by two
variants of the proposed method and those produced by parametric models, specifically
Black and Scholes (1973) and Heston and Nandi (2000). The results indicate that the
combined approach of the Beta-t-GARCH model and the empirical Esscher transform
show significantly better outcomes most of the time.
Keywords: Nonparametric estimation; Dynamic conditional score; Option pricing; Em-
pirical Esscher transform.
JEL Code: C1, C5, C6, G1.

1. Introduction

In their seminal paper, Black and Scholes (1973) derived a valuation for-
mula for European options by modeling the prices of the underlying asset as a
simple Gaussian Brownian Motion (GBM). Using a non-arbitrage argument,
they obtained the risk-neutral process by altering the drift of the GBM. How-
ever, the Gaussian distribution struggles to explain several empirical stylized
facts of financial returns, such as heavy tails, skewness, stochastic and mean-
reverting volatility, among others (Tsay, 2013).

A vast body of literature has aimed to address this misspecification while
still providing an explicit risk-neutral model for the underlying asset. Notable
examples, based in the same non-arbitrage argument, include models by Cox
and Ross (1976), Harrison and Kreps (1979), and Harrison and Pliska (1981).

Submitted on July 2, 2022. Revised on January 31, 2023. Accepted on January 31, 2023. Pub-
lished online in September 2023. Editor in charge: Marcelo Fernandes.

†Universidade Federal Rural do Rio de Janeiro, Brazil: mpereira_tr@hotmail.com
‡Pontifícia Universidade Católica do Rio de Janeiro, Brazil: alvf@ele.puc-rio.br

Brazilian Review of Finance (Online), Rio de Janeiro, Vol. 21, No. 3, August 2023, pp. 73–98 ISSN 1679-0731, ISSN online 1984-5146
©2023 Sociedade Brasileira de Finanças, under a Creative Commons Attribution 3.0 license

mpereira_tr@hotmail.com
alvf@ele.puc-rio.br
http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index
https://www.sbfin.org.br
http://creativecommons.org/licenses/by/3.0


Pereira and Veiga, 2023

A significant advance in addressing these misspecifications is integrating
all empirical evidence into the pricing model. This means constructing a data-
generating process that mirrors the stylized facts of the underlying asset while
also using economic arguments and mathematical tools for risk neutralization.
Within this parametric framework, the formulation of an explicit risk-neutral
model for option pricing is limited to a handful of probability distributions.

For instance, the normality assumption fails to capture the negative skew-
ness and excess kurtosis typical of log-returns. Resorting to stochastic jumps
has become the favored approach to address the limitations of models with
Gaussian innovations in continuous time(Bates, 2000; Eraker et al., 2003;
Chernov et al., 2003).1 In discrete time,2 the results are pertinent only when
the moment-generating function of the innovation distribution exists.3 In such
cases, we have multiple distributions to consider: Gaussian (Duan, 1995),
Gamma (Siu et al., 2004), smoothly-truncated stable (Menn and Rachev,
2005), generalized error distributions (Christoffersen et al., 2006), and gener-
alized hyperbolic (Chorro et al., 2008; Badescu et al., 2011).

When innovations exhibit heavy-tailed distributions, such as Student’s in-
novations and historical asset returns, three methods can be applied, as shown
by Liu et al. (2015). The first method states that real-world investors are risk-
neutral (see Satoyoshi and Mitsui, 2011). The second method estimates pa-
rameters so that the underlying asset return implied by the model matches
the risk-free interest rate (see Barone-Adesi et al., 2008). Both methods by-
pass an explicit change of measure. The third method, introduced by Badescu
and Kulperger (2007), employs the extended Girsanov principle to derive the
risk-neutral measure.

Other research has leveraged nonparametric estimation4 to identify a risk-

1Christoffersen et al. (2011) argue that continuous-time models have become the cornerstone of
modern option pricing theory. They provide closed-form solutions for European options and can
incorporate stochastic volatility, leverage effects, and various types of risk premia (Heston, 1993;
Bakshi et al., 1997; Broadie et al., 2007).

2Discrete-time settings, or GARCH frameworks, offer several advantages over continuous-time
pricing models. They can serve as accurate numerical approximations of continuous-time models
(Nelson and Cao, 1992; Nelson, 1996), eliminating discretization bias. Their predictions align
perfectly with the filter used to extract variance (Harvey, 2013). Estimation is computationally
efficient, volatility is observable at each time point, and they can incorporate multiple factors
(Engle and Lee, 1999) and long memory (Bollerslev and Mikkelsen, 1996).

3Christoffersen et al. (2006), Heston (1993), and Heston and Nandi (2000) derived the risk-neutral
measure from characteristic functions, but this is restricted to normal or inverse Gaussian inno-
vations.

4There are two primary ways to nonparametrically estimate risk-neutral probabilities implicit in
financial instruments: methods that infer the empirical risk-neutral probability from the options
market and those that derive it from asset prices. Refer to Jackwerth (2004).
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neutral measure for heavy-tailed distributions within GARCH models. Duan
(2002) and Liu et al. (2015) utilized the canonical valuation,5 as proposed by
Stutzer (1996). In this approach, the measure change doesn’t rely on the distri-
bution of innovations, making it applicable even when the moment-generating
function of the innovation’s probability distribution is missing.

Several studies have expanded nonparametric option pricing in two main
directions. The first direction demonstrates the methodology’s flexibility and
its accurate performance with realistic financial time series (see Gray and
Newman, 2005; Alcock and Carmichael, 2008; Haley and Walker, 2010;
Almeida and Azevedo, 2022). The second direction proposes other discrep-
ancy functions as alternative measures of distance in the space of probabilities
(see Haley and Walker, 2010; Almeida and Azevedo, 2022).

In this paper, we explore the versatility of nonparametric option pricing
within a GARCH framework that incorporates non-Gaussian innovations. To
represent a realistic financial time series, we employ a novel class volatility
models, the dynamic conditional score, introduced by Harvey (2013).6 These
models define the parameters of the conditional distribution at time t as a
linear function of parameters up to t − 1 and the score function of the log-
likelihood function. They are robust to extreme events and can capture the
leverage effect by incorporating components that represent short and long-
term volatilities. Harvey (2013) presents two models for volatility: Beta-t-
(E)GARCH and Gamma-GED-(E)GARCH.7 The focus here is on the Beta-
t-GARCH model.8

In this study, we sidestep the formulation of a risk-neutral model. Instead,
risk-neutralization is applied directly to the empirical distribution found in the
sample paths generated from the assumed model, as seen in Liu et al. (2015)
and Duan (2002). We obtain the empirical risk-neutral measure by applying

5The maximum entropy principle is employed to transform the empirical distribution of future
sample asset returns into its risk-neutral counterpart by minimizing the Kullback-Leibler infor-
mation criterion (KLIC).

6Harvey (2013) emphasizes that the model’s goal is to capture heavy-tailed distributions with lo-
cation µt and/or scale ht evolving over time. The defining feature of these models is that their
dynamics are propelled by the score of the conditional distribution. This allows for potential
extensions to address other distributions with local linear trends, seasonality, skewed distribu-
tions, and time-varying skewness and kurtosis. Familiar models like GARCH can be expressed
as specific instances of Score Driven Models.

7In the first, the conditional score is a linear function of a variable following a Beta distribution,
while in the second, the conditional score is linearly related to a variable with a Gamma distri-
bution.

8Harvey (2013) acknowledges that Beta-t-(E)GARCH models surpass Gamma-GED-(E)GARCH
models. Furthermore, the Beta-t-GARCH model can be viewed as an approximation of the Beta-
t-EGARCH model.
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the empirical version of the Esscher transform (Esscher, 1932), called the
empirical Esscher transform (EET), as proposed by Pereira and Veiga (2017),
to the set of simulated price scenarios.

The primary contribution of this paper lies in the exploration of the Beta-t-
GARCH models to generate the necessary set of price scenarios for the EET.
We evaluate its pricing capability in relation to two established parametric
benchmarks: Black and Scholes (1973) and Heston and Nandi (2000), using
real data from call option prices on two stocks traded on the Brazilian Finan-
cial Market BOVESPA, specifically Vale and Petrobras.

The paper is structured as follows: section 2 introduces the proposed
method. section 3 details the methodology used to compare the different pric-
ing methods, and section 4 discusses the results. section 5 concludes the paper
by summarizing the main findings.

2. Proposed method

First, we present the score-driven Beta-t-GARCH model by Harvey (2013),
which will be used to generate a set of price scenarios for the underlying as-
set at maturity. Then, we describe the empirical Esscher transform (Pereira
and Veiga, 2017), which uses the set of price scenarios as input to produce an
empirical risk-neutral distribution and, ultimately, the fair value of the option,
based on a non-arbitrage argument.

2.1 Score-driven Beta-t-GARCH model for financial returns

Let yt be the log-return of the underlying asset at time t, defined by

yt = ln(St/St−1) , t = 1, . . . ,T, (1)

where St is the asset price at time t. Let f (yt |Ỹt−1,θt) be the density of yt con-
ditioned on its past values, in Ỹt−1 ≡ {y1,y2, . . . ,yt−1} , with parameter vector
θt . In a score general driven model, the evolution of the vector of parameters
θt is described by the dynamic equation

θt+1 = κ +Ast +Bθt , (2)

where κ , A, and B are fixed vectors and matrices with appropriate dimensions
and st = ψ (θt)∇(yt ,θt) , with ψ (θt) a positive definite scaling matrix and
∇(yt ,θt) = ∂ ln f (yt |Ỹt−1,θt)/∂θt the score of f (yt |Ỹt−1,θt).

The scaling matrix ψ (θt) is defined in several different ways in the liter-
ature. Here we follow Creal et al. (2013) and suggest defining it as a power p
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of the inverse of the information matrix, i.e.

ψ (θt) = E
[

∇(yt ,θt)∇T (yt ,θt)

Ỹt−1

]−p

, p ∈ Z+. (3)

Different models are automatically obtained by specifying the conditional
density f (yt |Ỹt−1,θt). In many cases, well-known models are obtained. For
example, if we define f (·) as a Gaussian distribution with zero mean and θt =
V [yt ] we obtain the usual GARCH model (Bollerslev and Mikkelsen, 1996).

Now, write the log-return yt as a fixed mean process with conditional het-
eroskedasticity and a standardized error term zt proportional to a t-student
random variable εt , i.e

yt = µ +
√

htzt , (4)

where zt =
√

(υ −2)/υ εt , υ > 2, and εt ∼ tυ . Substituting θt = [µ,ht−1,υ ]
T

into equation (2), the conditional density of yt can be written as

f
(

yt

∣∣∣Ỹt−1,µ,ht ,υ
)
=

Γ((υ +1)/2)
Γ(υ/2)

√
htπ(υ −2)

(
1+

(yt −µ)2

(ν −2)ht

)− υ+1
2

, (5)

where υ > 2.
Then, we verify that the score of f (yt |Ỹt−1,µ,ht−1,υ) can be written as

∇(yt ,µ,ht ,υ) =− 1
2ht−1

{
1− (υ +1)

[
m2

ω

1+ m2

ω

]}
(6)

with m = (yt −µ) and ω = (υ −2)ht . Harvey (2013) shows that the variable
(m2/ω)/(1 + m2/ω) follows a Beta(1/2,υ/2) distribution. Consequently,
∇(yt ,ht) has, as expected, zero mean and finite variance.

Setting p = 1 in (3), we obtain

ψ (µ,ht ,υ) = 2h2
t (7)

which leads to

st−1 = ψ (µ,ht−1,υ)∇(yt−1,µ,ht−1,υ) = ht−1rt−1 (8)

with

rt−1 =

{
(υ +1)

[
m2

ω

1+ m2

ω

]
−1

}
, −1 ⩽ rt−1 ⩽ υ . (9)
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Note that rt has a known distribution with zero mean since it is a lin-
ear function of a Beta(1/2,υ/2) random variable. We can then express the
score-driven dynamic equation for the stochastic variance ht of the Beta-t-
GARCH(1,1) model as

ht = δ +(φ +αrt−1)ht−1. (10)

The sufficient conditions for the conditional variance to remain positive
are δ > 0, φ ⩾ 0, α ⩾ 0, and φ −α ⩾ 0. For this last condition, note that
rt ∈ [−1,υ ].

Given these conditions, ht > 0, and the drift criterion of Meyn and Tweedie
(1994) applies directly, showing that 0 ⩽ φ < 1 is a sufficient condition for
the process to be strictly stationary and ergodic. This implies that ht converges
in distribution, which ensures the consistency of the fixed parameters of the
model.

In our exercises, an extended version of the model is used, as suggested
by Harvey (2013), to include leverage effects by adding the indicator variable
I (yt−1 < 0), as follows:

ht = δ +φht−1 +αht−1rt−1 + I (yt−1 < 0)α
∗ht−1rt−1. (11)

The conditions for the positivity of ht are analogous to the previous case:
δ > 0, φ ⩾ 0, α ⩾ 0, α∗ ⩾ 0, and φ ⩾ max(α,α∗).

In our method, the pricing of an option at time t∗ is carried out in two
steps. First, we estimate the fixed parameters δ , φ , α, α∗, µ , and υ using
data up to t∗. Then, we compute the sequence of h

′
ts up to time t∗. Finally, we

simulate trajectories for yt∗+1, . . . ,yt∗+τ with τ being the maturity of interest
using equations (4) and (11).

2.2 Option pricing via Empirical Esscher transform

The Esscher Transform (ET – Esscher, 1932) of a probability density
function (pdf) f (z) is defined as a function of a parameter λ , termed the Ess-
cher parameter, and is given by

f (z;λ ) =
eλ z∫ +∞

−∞
eλw f (w)dw

f (z). (12)

The ET f (z;λ ) is a distorted version of f (z) and is also a pdf since it
integrates to one. For instance, if f (z) is a Gaussian distribution, f (z;λ ) will
also be Gaussian with a different mean, provided λ ̸= 0.
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Gerber and Shiu (1994) proposed using the ET to determine the so-called
‘risk-neutral measure’ Q. According to the fundamental theorem of asset pric-
ing (Binghan and Kiesel, 2004), the value of a derivative is simply the ex-
pected value of the payoff discounted by the risk-free rate of return.

Let g(ST ) represent a derivative and ST be the price of the underlying at
its maturity, at time T . The risk-neutral value v(g(ST )/S0) of the derivative,
measured at time t = 0, is given by

v
(

g(ST )

S0

)
= e−rT EQ

[
g(ST )

S0

]
.

Let YT = ∑
T
t=1 yt denote the cumulative log-return for T time periods.

Given that ST = S0eYT , f (YT |F0) is its pdf conditioned on the information
set at t = 0, F0, and f (YT ;λ |F0) is the corresponding Esscher Transform.
Then,

v
(

g(ST )

S0

)
= e−rT

∫ +∞

−∞

g
(
S0eYT

)
f (YT ;λ |F0)dYT . (13)

This holds true even if the derivative is the asset itself, implying g(ST ) = ST
and v(g(ST )/S0) = S0. This establishes the non-arbitrage constraint,

e−rT

∫ +∞

−∞

S0eYT f (YT ;λ |F0)dYT︸ ︷︷ ︸
=S0

→ erT =
∫ +∞

−∞

eYT f (YT ;λ |F0)dYT . (14)

Expressing the risk-neutral measure f (YT ;λ |F0) as the ET of f (YT |F0)
yields

erT =

∫ +∞

−∞
e(λ+1)Y T f (YT |F0)dYT∫ +∞

−∞
eλYT f (YT |F0)dYT

→ erT =
M(λ +1)

M(λ )
, (15)

where M(λ ) is the moment generating function (mgf) of YT |F0.
Following the Gerber and Shiu (1994) methodology for derivative pricing,

one must assume a distribution for YT |F0, compute its mgf, solve (15),

λ
∗ = argλ

{
erT =

M(λ +1)
M(λ )

}
,

then compute the ET using (12), and finally, use (13) to determine the risk-
neutral value of the derivative.

The Gerber and Shiu (1994) methodology is limited to cases where f (YT |F0)
is known. This poses a significant constraint since, even for the simple case
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where log-returns follow the widely recognized GARCH process (Bollerslev,
1987), f (YT |F0) is unknown for T > 1. A potential solution to this limita-
tion is the Empirical Esscher transform (EET) proposed by Pereira and Veiga
(2017). Consider a random sample of cumulative log-returns of size n from
f (YT |F0), denoted by {YT,i}n

i=1. The EET is defined as

qi,λ =
eλYT,i

∑
n
j=1 eλYT, j

.

Observe that
{

qi,θ
}n

i=1 forms a probability mass function on its own since
∑

n
i=1 qi,θ = 1 and qi,θ > 0, ∀i. It’s worth noting that

{
qi,θ
}n

i=1 can be viewed
as a reweighted version of the original sample {YT,i}n

i=1:

qi,λ = mq (YT,i;λ ) pi,

where pi = 1/n is the original weight and mq (YT,i;λ ) is the reweighting func-
tion, given by

mq (YT,i;λ ) =
eλYT,i

1
n ∑

n
j=1 eλYT, j

.

With the EET, the non-arbitrage condition (14) can be reformulated as

erT =
n

∑
i=1

eYT,iqi,λ =
∑

n
i=1 e(λ+1)YT,i

∑
n
j=1 eλYT, j

or erT =
M̂(λ +1)

M̂(λ )
,

where

M̂(λ ) =
1
n

n

∑
j=1

eλYT, j .

The empirical Esscher parameter is then expressed as

λ̂
∗ = argλ

{
erT =

M̂(λ +1)

M̂(λ )

}
. (16)

The weak law of large numbers ensures that if E
[
eλyT

∣∣F0
]

and E
[
2eλyT

∣∣F0
]

exist for all λ ∈R, then M̂(λ ) is a consistent estimator of M(λ ), i.e.,

M̂(λ )
P→ M(λ ).

Therefore, by invoking the continuous mapping theorem by Mann and
Wald (1943), the empirical Esscher parameter will also converge to the Ess-
cher Parameter, i.e.,

λ̂
∗ P→ λ

∗.
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It is noteworthy that the same risk-neutral measure is achieved by the
canonical valuation proposed by Stutzer (1996) using a distinct approach.
However, his framework does not accommodate the convergence results of-
fered by the EET.

3. Methodology

This section presents the methodology used to compare our proposal with
the Black and Scholes (1973) and Heston and Nandi (2000) models in exper-
iments using recent data.

3.1 Data

Two data sets have been used in this analysis. The first set comprises 260
daily closing prices for Vale and Petrobras from January 2nd, 2011, to Jan-
uary 17th, 2012. This set will be used to estimate both the Black-Scholes
and Heston-Nandi models, and to simulate price trajectories through boot-
strapping. The second data set consists of option market prices for Vale and
Petrobras with a range of different maturities and strike prices on January
18th, 2012, the day following the period covered by the first data set. In our
exercise, we are at t = 0, which is the moment after the market closed on Jan-
uary 17th, 2012. The closing prices for that day are S0 = R$ 41.13 for Vale
and S0 = R$ 24.37 for Petrobras.

Table 1 presents the main descriptive statistics of the log returns of Vale
and Petrobras. Both show a negative mean, similar risk levels, negative skew-
ness, and excess kurtosis. Moreover, the Ljung-Box test indicates that the
squared log returns are serially correlated, while the simple log returns are
not for both series. This, combined with the excess kurtosis, indicates the
necessity of using volatility models.

Figures 1 and 2 show the price behavior during the studied period. Since
the 2008 crisis, the prices of these companies have followed a downward
trend. The primary factors contributing to the decline in prices were the Arab
Spring, the downgrade of the US credit rating by Standard and Poor’s, and
the crisis in the Eurozone (Greece, Italy, Ireland, and Portugal declared an
inability to pay their debts).

Table 2 displays the market closing prices of options for Vale and Petro-
bras for different strikes and maturities: 17/252, 40/252, 59/252, and 121/252
years.9 The risk-free interest rate is derived from the forward curve of swap

9All required data were obtained from B3 (http://www.b3.com.br). Accessed on
12/20/2017.
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Table 1
Descriptive statistics of the log returns

Mean Std. Dev. Skewness Kurtosis Maximum Minimum

Petrobras 0.00 0.02 −0.56 5.22 0.05 −0.08
Vale 0.00 0.02 −0.65 7.14 0.06 −0.10

Figure 1
Vale prices from January 17th, 2011, to January 17, 2012

Contracts DI X PRE,10 with maturities of 30, 60, 90, and 120 days.11 The fi-
nal values are 10.3499% for maturity 17/252, 10.2485% for maturity 40/252,
10.1721% for maturity 59/252, and 10.032% for maturity 121/252, deter-
mined by linear interpolations.12

3.2 Pricing models and methods

In our comparison exercise, we evaluate three pricing methodologies: the
parametric Black-Scholes and Heston-Nandi models, and our non-parametric
pricing methodology (EET) using scenarios generated by Harvey’s Score-
Driven Beta-t-GARCH model. Additionally, we also consider EET using sce-

10The DI spot rate is the overnight interbank deposit rate, representing the interest rate at which
a depository institution lends immediately available funds to another depository institution. It
offers an efficient method for banks to access short-term financing from central bank depositories.

11http://www.bcb.gov.br. Accessed on 12/20/2017.
12According to Hagan and West (2006), the primary issues with interpolation algorithms are that

they may not be arbitrage-free and/or they might lead one to derive unreasonable hedging strate-
gies.
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Table 2
Market prices of options in Vale and Petrobras

Vale (VALE5) Petrobras (PETR4)

Maturity (days) Strike Option price Strike Option price

17

44.00 0.11 25.66 0.18
43.14 0.21 25.16 0.27
42.00 0.54 24.83 0.43
41.14 0.99 23.66 1.12
41.00 1.03 22.83 1.80
40.14 1.72 21.66 2.88
39.07 2.50 20.83 3.63
38.57 2.75 19.66 4.94
37.14 4.24 18.66 5.78
37.00 4.41 17.66 6.78
36.14 5.32 15.16 9.19
36.00 5.34
35.00 6.05
34.00 7.31
30.14 11.41
30.00 11.65
28.00 13.59

40

46.07 0.15 27.83 0.09
46.00 0.20 27.00 0.17
45.57 0.19 25.83 0.40
44.07 0.42 25.33 0.61
43.07 0.86 25.00 0.77
42.07 1.25 23.83 1.38
42.00 1.32 22.83 2.11
41.00 1.83 21.66 3.08
40.57 2.01 21.00 3.70
40.00 2.51 19.66 4.95
38.00 4.00 18.66 5.79
37.00 4.75 17.83 6.60
36.57 5.21
35.07 6.50
32.00 9.30

59

48.00 0.21 26.00 0.58
44.14 0.87 24.00 1.50
44.00 0.90 21.83 3.21
41.07 2.30
40.00 3.00

121 25.50 1.85
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Figure 2
Petrobras prices from January 17th, 2011, to January 17, 2012

narios generated by bootstrapping the historical log-returns from the first data
set.

3.2.1 Proposed pricing method: EET + Beta-t-GARCH model

Our pricing methodology consists in four steps:

Step 1. Consider one year (252 days) of daily prices of the underlying and
estimate the Beta-t-GARCH model.

Step 2. With the estimated model, generate a sample of size n of the underlying
prices at maturity, ST,i, where i = 1, . . . ,n.

Step 3. Evaluate the EET for this sample and compute the parameter, λ̂ ∗.
Step 4. With the transformed sample, compute the option price, given by the

mean value of the payoff at maturity discounted by the risk-free rate of
interest.

Once the model is estimated in step 1, we generate a sample of size 252
of possible cumulated returns {YT,i}252

i=1 using model (1) to (11) for each ma-
turity T = 17/252, 40/252, 59/252, and 121/252. In step 3, we compute the
empirical Esscher parameter, θ̂ ∗, using the equation (16), as below:

λ̂
∗ = argθ

{
erT =

eλYT,i

∑
n
j=1 eλYT, j

}
,
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and, finally, in step 4, we calculate the option price

C(K,T ) = e−rT

[
n

∑
j=1

(ST,i −K)+
eθ̂∗YT,i

∑
n
j=1 eθ̂∗YT, j

]
, ST,i = S0eYT,i .

We refer to this result as the price EET-BtG (Empirical Esscher Trans-
form with Beta-t-GARCH Model). Since the option price estimate obtained
from this methodology is subject to sample variation, we repeat the procedure
15,000 times and calculate the mean price. We then calculate the Absolute
Percentage Error (APE) in relation to the option market price.

We also tried a different combination with a sample size of 50,000 with
200 repetitions to analyze if the accuracy increases with the sample size. We
calculate the mean price and refer to this variant as price EET-BtG*. We then
calculate the APE in relation to the option market price.

3.2.2 Variation of proposed pricing method: EET + Bootstrapping

In this variation, the Beta-t-GARCH model is replaced when simulating
trajectories for the log-return with a bootstrapping procedure, as in Pereira
and Veiga (2017). The modified algorithm is then:

1. Take a bootstrap sample of size T from the historical log-returns in the
first database.

2. Compute the cumulated log-return YT,i.
3. Repeat steps (1) and (2) with i = 1, . . . ,252 to produce the sample

{YT,i}252
i=1.

4. Evaluate the EET for this sample and compute the parameter, λ̂ ∗.

This is the price EET-B (Empirical Esscher Transform with bootstrap). As
before, we repeat this procedure 15,000 times and calculate the mean price.
We then calculate the APE in relation to the option market price. As before,
we repeat the procedure with a sample size of 50,000 with 200 repetitions and
refer to this variant as price EET-B*. We then calculate the APE in relation to
the option market price.

3.2.3 The Black-Scholes model

The Black and Scholes (1973) formula for the price of options assumes
that stock prices follow a geometric Brownian motion with normally dis-
tributed logarithmic returns and constant drift and volatility. The pricing for-
mula for a European call option with maturity T on a non-dividend-paying
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stock is given by
C = S0N (d1)−Ke−rT N (d2) ,

where

d1 =
ln
(

S0
K

)
+
(

r+ σ2

2

)
T

σ
√

T

d2 =
ln
(

S0
K

)
+
(

r− σ2

2

)
T

σ
√

T

The functions N(d1) and N(d2) represent the cumulative probability dis-
tribution functions for a normal variable with zero mean and variance equal
to 1. C is the price of the call option, S0 is the stock price at time 0, r is the
risk-free interest rate continuously compounded, and σ is the asset volatility.
In Black-Scholes prices, we use the annualized historical volatility. We refer
to this as the price BSM (Black-Scholes Model). We then calculate the APE
in relation to the option market price.

3.2.4 The Heston-Nandi model

The Heston and Nandi (2000) model assumes that the log-returns yt =
ln(St)− ln(St−1) follow a GARCH (1,1) in-the-mean process driven by the
following pair of equations, under the physical measure:

yt = r+λσ
2
t +σtzt ,

with
σ

2
t = ω +βσ

2
t−1 +α (zt−1 − γσt−1)

2 ,

where r is the risk-free interest rate, λ represents the risk premium, σ2
t is the

conditional variance, and zt is the error term distributed as a standard normal
variable, zt ∼ N(0,1). The parameter α determines the degree of kurtosis, γ

determines the skewness, and variance persistence is given by β +αγ2. The
process will be mean-reverting if β +αγ2 < 1. The risk-neutral version of
this model can be written as

yt = r− 1
2

σ
2
t +σtz∗t

σ
2
t = ω +βσ

2
t−1 +α

(
z∗t−1 − γ

∗
σt−1

)2
,

where λ is replaced by −1/2, z∗t is defined as z∗t = zt +
(
λ + 1

2

)
σt , and γ is

replaced by γ∗ = γ +λ − 1/2. The price at time t of a European call option
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with maturity at time t +T is given by:

C = e−rT E∗
t
[
(St+T −K)+

]
= StP1 −Ke−rT P2,

where T is the time to maturity, E∗
t [St ] is the expectation of St under the risk-

neutral distribution, St is the price of the underlying asset at time t, and P1 and
P2 are the risk-neutral probabilities. We refer to this as the price HN (Heston-
Nandi). We then calculate the APE regarding the option market price.

The quantities P1 and P2 can be obtained by inverting the characteristic
functions f ∗(φ):

P1 =
1
2
+

e−rT

πSt

∫
∞

0
Re
[

K−iφ f ∗(iφ +1)
iφ

]
dφ

P2 =
1
2
+

1
π

∫
∞

0
Re
[

K−iφ f ∗(iφ)
iφ

]
dφ

4. Results

Before beginning the estimation procedure, we confirmed that the Ljung-
Box test fails to reject the “zero autocorrelation hypothesis” for log-returns
and does reject it for the square log-returns in both series. All parameters
were estimated using the maximum likelihood method from the first data set,
which contains 260 daily closing prices for Vale and Petrobras.13

Table 3 displays the results for the Heston-Nandi model. The sufficient
condition for the conditional variance to remain positive was met (ω̂ > 0,
β̂ ⩾ 0, α̂ ⩾ 0, γ̂ ⩾ 0, and λ̂ ⩾ 0), and the process is mean-reverting because
β̂ + α̂ γ̂2 < 1.

Table 4 provides estimates for the Beta-t-GARCH model, with the asso-
ciated standard errors in parentheses. All estimates are significant at the 5%
level and meet the sufficient conditions for the conditional variance to be pos-
itive, i.e., δ̂ > 0, φ̂ ⩾ 0, α̂ ⩾ 0, and α̂∗ ⩾ 0. Moreover, yt is strictly stationary
and ergodic since φ < 1. The estimated degrees of freedom (υ) suggest a dis-
tribution with heavy tails, as anticipated. The leverage effect parameter (α̂∗)
also indicates that a positive yt contributes αut−1ht−1 to ht , while a negative

13Regarding parameter optimization, we employed the following heuristics: We began with a ran-
dom initial condition and utilized the Nelder-Mead optimization methodology. The values of
the resulting parameters served as an initial solution for the BFGS optimization method. Subse-
quently, the Nelder-Mead method was applied again, and this process continued until the differ-
ence between successive solutions was less than a tolerance value of 0.10.
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Table 3
Estimated parameters of Heston-Nandi model

Petrobras Vale

T = 17/252 T = 40/252 T = 59/252 T = 121/252 T = 17/252 T = 40/252 T = 59/252

ω̂ 8.24×10−7 2.77×10−6 2.27×10−6 3.29×10−8 4.07×10−5 2.86×10−5 1.68×10−5

β̂ 9.91×10−1 9.82×10−1 9.83×10−1 9.88×10−1 8.43×10−1 8.81×10−1 9.30×10−1

α̂ 1.98×10−6 3.02×10−6 3.17×10−6 3.75×10−6 3.24×10−6 4.09×10−6 2.96×10−6

γ̂ 1.99×101 3.57×10−6 6.48×10−6 4.85×10−8 6.79 1.61×10−6 5.18×10−5

λ̂ 3.04×10−12 8.80×10−2 6.64×10−2 1.00×10−1 1.07×10−10 8.52×10−5 2.28×10−7

Table 4
Estimated parameters of Beta-t-GARCH model

δ̂ φ̂ α̂ α̂∗ µ̂ v̂

Petrobras 2.09×10−5 9.31×10−1 5.77×10−2 6.84×10−2 −1.31×10−4 6.99
(1.98×10−6) (6.72×10−3) (4.43×10−3) (5.92×10−3) (6.05×10−6) (1.82×10−1)

Vale 2.76×10−5 9.01×10−1 1.63×10−1 4.13×10−2 −6.42×10−4 6.40
(9.93×10−7) (3.96×10−3) (6.02×10−3) (7.86×10−3) (5.23×10−5) (1.45×10−1)

yt has a more substantial impact (α̂ + α̂∗)ut−1ht−1 with α̂∗ ⩾ 0. The esti-
mated conditional mean is negative, as shown in Table 1, but is lower than the
corresponding conditional mean of raw log-returns.

Standardized residuals and their squares showed no serial correlation ac-
cording to the Ljung-Box test for both models, suggesting their adequacy.
Moreover, the null of the Jarque-Bera test was strongly rejected, indicating
that the models have been correctly fitted.

Tables 5 and 6 present the APEs obtained by the EET-BtG, EET-BB, BS,
and HN models for options on Petrobras and Vale, respectively. Errors are
calculated regarding the closing market prices of the option for a specific day,
using one year of past data up to the market closing of the preceding day.

Figures 3a and 3b display the pricing errors ordered by moneyness for
Petrobras and Vale, respectively. For clarity, we chose not to display the actual
scale of moneyness. The black bottom line represents the error obtained by
our proposed EET-BtG model, while the dots represent the error for EET-B,
BS, and HN.

The pricing errors for all methods decrease significantly as moneyness in-
creases. This trend is because pricing out-of-the-money options is challeng-
ing, as previously highlighted by Gray and Newman (2005) and Haley and
Walker (2010). Notably, our proposed EET-BtG model consistently exhibits
lower pricing errors compared to other methods for both Petrobras and Vale
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Figure 3
Absolute Percentage Error for VALE (3a) and Petrobras (3b)

(a) Vale (b) Petrobras

Black line: EET-BtG, square: EET-B, circle: BS, triangle: HN. For clarity, moneyness is not represented in
its original scale but just by its rank order. Low level errors (around 3% or less) are observed for moneyness
greater than 1.05.

options. For Petrobras options, EET-BtG had the lowest MAPE in 23 out of
27 cases, and for Vale options, it had the lowest MAPE in 34 out of 37 cases.
In the remaining cases, EET-AM was very close to the top-performing model.

For Petrobras, the second-best model was EET-B, followed closely by BS,
with HN surprisingly underperforming. However, for Vale, HN was distinctly
the second-best model, outperforming EET-B and BS in 27 out of 37 cases.

We attribute the comparatively positive results for EET-BtG to two pri-
mary factors. First, Pereira and Veiga (2017) demonstrated through a sim-
ulation study that EET can closely mimic the pricing formulas of BS and
HN. In our experiment, if the data adhered to one of these models, EET-BtG
should accurately replicate their pricing. Additionally, the BtG model, unlike
BS and HN, is tailored for robustness against the extreme market fluctuations
observed in historical prices for the specified timeframe.

On the other hand, two factors might contribute to pricing errors: synchro-
nization mismatch and, more significantly, liquidity risk. The synchroniza-
tion mismatch occurs because the closing price of the underlying asset used
in this study differs from the closing price of the options at the time of trade.
This discrepancy can lead to substantial pricing errors (George and Longstaff,
1993) and spurious arbitrage opportunities (Galai, 1979). The liquidity risk
associated with the derivative significantly influences market prices, causing
notable deviations from the “fair price” determined by models (Pérignon and
Villa, 2002). None of the models or methods in our analysis can explain this
effect.

Tables 7 and 8 display the results of the comparison between the relative

Brazilian Review of Finance (Online) 21(3), 2023 89

http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index


Pereira and Veiga, 2023

errors for the proposed method for different sample sizes for the Petrobras
and Vale databases, respectively. We increased the sample size of the empir-
ical distribution to analyze its impact on prices calculated by the proposed
method (EET-AM* and EET-B*). Generally, the results do not show a sig-
nificant reduction in pricing errors that would justify the high computational
cost of generating scenarios.

5. Conclusions

In this study, we propose and evaluate a new option pricing method termed
EET-BtG. This method is based in the Empirical Esscher Transform as pre-
sented by Pereira and Veiga (2017), and employs price scenarios generated by
the dynamic conditional score model Beta-t-GARCH, as proposed by Harvey
(2013). Notably, this model is robust to outliers and makes the modeling of the
leverage effect easier, incorporating both short-term and long-term volatility
components.

A primary advantage of our method, similar to other non-parametric tech-
niques, is its ability to bypass the necessity of constructing an explicit risk-
neutral model for returns. Thus, parametric pricing becomes intricate since it
requires the alignment of both physical and risk-free models using compatible
parameters.

With our approach, the physical model is decoupled from the pricing pro-
cedure. A sample of prices for the underlying asset is produced under the
physical model, which is subsequently reweighted using EET, yielding a risk-
neutralized sample. The option’s price is then straightforwardly determined
by the weighted mean of the pay-offs within this sample, discounted at the
risk-free interest rate.

We unite our method with two established competing models: Black and
Scholes (1973) and Heston and Nandi (2000). We assess the pricing capa-
bilities of these models for options across various strike prices and maturi-
ties, focusing on two assets traded in the Brazilian financial market: Vale and
Petrobras.

Our proposed method, EET-BtG, showcased the APEs across all maturi-
ties and moneyness levels. Broadly speaking, our findings align with existing
literature. It was possible to observe that pricing errors decrease as money-
ness escalates (refer to Gray and Newman, 2005; Haley and Walker, 2010)
and are more pronounced for deep-out-of-the-money and out-of-the-money
options (Gencay and Salih, 2003).

The promising outcomes from our method suggest that the EET, as in-
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Table 5
Absolute percentage errors of Empirical Esscher Transform estimates for

Petrobras
Maturity Moneyness (spot/strike) EET-BtG EET-B BSM HN

T = 17/252 Deep-out-of-the-money 0.95 30.0697 51.6393 63.7784 77.4953

Out-of-the-money 0.97 39.0752 56.8726 64.7611 78.4734
0.98 16.1753 28.2949 32.8115 43.1060

In-the-money 1.03 1.6857 7.5260 8.1260 13.4044
1.07 0.8618 2.1482 2.0521 5.2937

Deep-in-the-money 1.13 0.3616 0.3637 0.1661 1.8891
1.17 1.4873 1.6451 1.5740 2.7965
1.24 1.9716 1.9494 1.9618 1.1296
1.31 0.9664 0.9686 0.9669 1.1198
1.38 0.7244 0.7245 0.7244 0.7847
1.61 1.3303 1.3303 1.3303 1.3654

T =40/252 Deep-out-of-the-money 0.88 97.0938 112.7758 140.7773 91.3502
0.90 81.8346 90.5321 107.5664 91.6974
0.94 56.2463 56.8326 64.2107 64.7549
0.96 29.6578 32.5719 37.0929 39.6310

Out-of-the-money 0.97 17.9689 23.0286 26.3649 29.5165

At-the-money 1.02 8.0226 13.4987 14.6670 18.5379

In-the-money 1.07 2.9488 6.5800 6.9186 10.3816

Deep-in-the-money 1.13 2.2976 3.7873 3.7871 6.6295

1.16 1.4679 2.2564 2.2069 4.6907
1.24 1.7016 1.8856 1.8454 3.7674
1.31 3.8063 3.8681 3.8496 5.4948
1.37 3.4178 3.4406 3.4331 3.9858

T = 59/252 Deep-out-of-the-money 0.94 40.0601 47.5063 53.6051 54.6439

At-the-money 1.02 19.8938 19.0197 20.5533 24.8240

Deep-in-the-money 1.12 4.1748 3.1370 3.3037 6.7046

T = 121/252 Deep-out-of-the-money 0.96 0.6364 5.1689 3.9998 7.5215

This table contains the prices for a European call option from EET-BtG (empirical Esscher transform with
Beta-t-GARCH model), EET-B (bootstrap with replacement on historical returns), BSM (Black-Scholes) and
HN (Heston-Nandi) methods for different moneyness, maturities and they are compared to the true market
price of Petrobras data. The numbers reported for each combination are the APEs. In the proposed method, we
use 252 returns and the simulation is repeated 15,000 times.
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Table 6
Absolute percentage errors of Empirical Esscher Transform estimates for Vale

Maturity Moneyness (Spot/strike) EET-BtG EET-B BSM HN

T = 17/252 Deep-out-of-the-money 0.93 132.3809 177.7454 207.6516 149.4234
0.95 102.9132 136.3859 154.5106 124.6248

Out-of-the-money 0.98 42.8648 62.7852 69.9354 59.8857

At-the-money 1.00 15.7799 29.4206 32.8052 28.5659
1.00 18.2929 31.6931 34.8277 30.9905
1.02 0.6636 9.1424 10.4689 9.1643

In-the-money 1.05 1.5949 6.2268 6.6073 6.6472
1.07 7.6055 11.3211 11.4716 11.8876
1.11 0.7302 2.0628 1.9543 2.1187
1.11 0.0997 1.0810 0.9691 1.8023

Deep-In-the-money 1.14 1.4029 0.8775 0.9795 0.1384
1.14 0.8132 1.2765 1.1766 2.0321
1.18 5.3185 5.4862 5.4232 6.2524
1.21 0.7264 0.7801 0.7516 1.4623
1.36 1.8745 1.8742 1.8745 1.8421
1.37 2.7025 2.7022 2.7025 2.6711
1.47 1.9758 1.9758 1.9759 1.9513

T = 40/252 Deep-out-of-the-money 0.89 97.1126 198.1214 228.7324 140.4928
0.89 52.9349 129.5083 152.6143 86.4836
0.90 98.3808 182.5218 208.0594 138.9450
0.93 72.0110 113.4649 126.1089 96.9817
0.95 21.8471 42.4646 48.6054 35.7837

Out-of-the-money 0.98 17.2539 30.8073 34.7675 72.3618
0.98 13.4745 26.2884 30.0114 23.0940

At-the-money 1.00 8.7974 18.5782 20.9070 17.1773
1.01 11.0570 20.0682 22.0163 19.1798

In-the-money 1.03 2.7025 9.9956 11.3534 9.7122
1.08 0.5307 4.7083 5.1001 5.5257
1.11 2.7652 5.3974 5.5660 6.4849

Deep-In-the-money 1.12 1.0646 3.1720 3.2741 4.3086
1.17 2.4545 3.4474 3.4372 4.7063
1.29 3.7298 3.8515 3.8311 4.9972

T = 59/252 Deep-out-of-the-money 0.86 22.6917 119.5118 144.6253 64.5129
0.93 22.9524 53.6051 61.1890 46.6326
0.93 23.9124 53.7180 61.0375 47.2443

At-the-money 1.00 5.3325 16.2658 18.5636 16.1516

In-the-money 1.03 3.1441 9.9069 11.3773 10.5606

This table contains the prices for a European call option from EET-BtG (empirical Esscher transform with
Beta-t-GARCH model), EET-B (bootstrap with replacement on historical returns), BSM (Black-Scholes) and
HN (Heston-Nandi) methods for different moneyness, maturities and they are compared to the true market
price of Vale data. The numbers reported for each combination are the APEs. In the proposed method, we use
252 returns and the simulation is repeated 15,000 times.
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Table 7
Comparison between the absolute percentage errors of the proposed method for

different sample sizes for Petrobras
Maturity Moneyness (spot/strike) EET-BtG EET-B EET-BtG* EET-B*

T = 17/252 Deep-out-of-the-money 0.95 30.0697 51.6393 28.8035 52.4537

Out-of-the-money 0.97 39.0752 56.8726 35.4213 57.5193
0.98 16.1753 28.2949 12.6480 28.7008

In-the-money 1.03 1.6857 7.5260 1.2814 7.6249
1.07 0.8618 2.1482 0.3616 2.1653

Deep-in-the-money 1.13 0.3616 0.3637 0.1626 0.3199
1.17 1.4873 1.6451 1.5369 1.6473
1.24 1.9716 1.9494 1.9543 1.9492
1.31 0.9664 0.9686 0.9693 0.9687
1.38 0.7244 0.7245 0.7247 0.7245
1.61 1.3303 1.3303 1.3303 1.3303

T =40/252 Deep-out-of-the-money 0.88 97.0938 112.7758 118.6863 116.2486
0.90 81.8346 90.5321 85.3186 92.6886
0.94 56.2463 56.8326 48.1147 57.8006
0.96 29.6578 32.5719 25.2225 33.1587

Out-of-the-money 0.97 17.9689 23.0286 16.4807 23.4608

At-the-money 1.02 8.0226 13.4987 9.2738 13.6603

In-the-money 1.07 2.9488 6.5800 4.1976 6.6383

Deep-in-the-money 1.13 2.2976 3.7873 2.7985 3.8054
1.16 1.4679 2.2564 1.7425 2.2653
1.24 1.7016 1.8856 1.7912 1.8884
1.31 3.8063 3.8681 3.8544 3.8692
1.37 3.4178 3.4406 3.4420 3.4408

T = 59/252 Deep-out-of-the-money 0.94 40.0601 47.5063 43.4797 48.4873

At-the-money 1.02 19.8938 19.0197 15.9649 19.2947

Deep-in-the-money 1.12 4.1748 3.1370 2.1643 3.1809

T = 121/252 Deep-out-of-the-money 0.96 0.6364 5.1689 1.2779 2.1500

This table contains the prices for a European call option from EET-BtG (empirical Esscher transform with
Beta-t-GARCH model) and the EET-B (bootstrap with replacement on historical returns) method for different
moneyness, maturities and they are compared to the true market price of Petrobras data. The numbers reported
for each combination are the APEs. We use 252 returns and the simulation is repeated 15,000 times in prices
EET-BtG. We use 50,000 returns and the simulation is repeated 200 times in prices EET-BtG*.
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Table 8
Comparison between the absolute percentage errors of the proposed method for

different sample sizes for Vale
Maturity Moneyness (Spot/strike) EET-BtG EET-B EET-BtG* EET-B*

T = 17/252 Deep-out-of-the-money 0.93 132.3809 177.7454 129.1951 180.9486
0.95 102.9132 136.3859 92.3902 138.1864

Out-of-the-money 0.98 42.8648 62.7852 36.1791 63.3947

At-the-money 1.00 15.7799 29.4206 12.6889 29.6875
1.00 18.2929 31.6931 15.4971 31.9417
1.02 0.6636 9.1424 0.1448 9.2528

In-the-money 1.05 1.5949 6.2268 1.3282 6.2675
1.07 7.6055 11.3211 7.6805 11.3457
1.11 0.7302 2.0628 1.0069 2.0680
1.11 0.0997 1.0810 0.1570 1.0852

Deep-In-the-money 1.14 1.4029 0.8775 1.2766 0.8763
1.14 0.8132 1.2765 0.9220 1.2770
1.18 5.3185 5.4862 5.3597 5.4856
1.21 0.7264 0.7801 0.7432 0.7797
1.36 1.8745 1.8742 1.8740 1.8742
1.37 2.7025 2.7022 2.7021 2.7022
1.47 1.9758 1.9758 1.9759 1.9758

T = 40/252 Deep-out-of-the-money 0.89 97.1126 198.1214 214.8283 203.1444
0.89 52.9349 129.5083 141.1287 133.2440
0.90 98.3808 182.5218 188.8369 186.5764
0.93 72.0110 113.4649 104.8281 115.2330
0.95 21.8471 42.4646 34.2552 43.2622

Out-of-the-money 0.98 17.2539 30.8073 22.8009 31.2986
0.98 13.4745 26.2884 18.5726 26.7483

At-the-money 1.00 8.7974 18.5782 11.9412 18.8487
1.01 11.0570 20.0682 13.7751 20.2916

In-the-money 1.03 2.7025 9.9956 4.8394 10.1493
1.08 0.5307 4.7083 2.1299 4.7574
1.11 2.7652 5.3974 3.7281 5.4220

Deep-In-the-money 1.12 1.0646 3.1720 1.8532 3.1884
1.17 2.4545 3.4474 2.8787 3.4521
1.29 3.7298 3.8515 3.7985 3.8518

T = 59/252 Deep-out-of-the-money 0.86 22.6917 119.5118 148.5000 125.0559
0.93 22.9524 53.6051 50.7790 55.1348
0.93 23.9124 53.7180 50.5609 55.1857

At-the-money 1.00 5.3325 16.2658 12.1033 16.6808

In-the-money 1.03 3.1441 9.9069 6.3625 10.1655

This table contains the prices for a European call option from EET-BtG (empirical Esscher transform with
Beta-t-GARCH model) and the EET-B (bootstrap with replacement on historical returns) method for different
moneyness, maturities and they are compared to the true market price of Vale data. The numbers reported
for each combination are the APEs. We use 252 returns and the simulation is repeated 15,000 times in prices
EET-BtG. We use 50,000 returns and the simulation is repeated 200 times in prices EET-BtG*.
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troduced by Pereira and Veiga (2017), warrants further exploration. It would
be beneficial to extend this research by encompassing a broader range of as-
sets and datasets. Additionally, testing this method within real-world trading
scenarios would be of significant value.
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