Determinants of inter-organizational network formation in the cultural sector

Main Article Content

Ignacio Ramos-Vidal

Abstract

In recent years, the number of studies applying Social Network Analysis to the formation of inter-orga­nizational networks has increased. This paper analyzed a socio-centric network composed of 32 cultural organizations in Andalusia to measure this increase. Multiple Regression Quadratic Assignment Proce­dure (MR-QAP) at the dyadic level, showed that perceptions of affinity (i.e., homophily) and the possibility of establishing contacts in the future, can exert influence on the establishment of informal contacts. At the internal level, an organization’s brokerage position in collaboration project networks is related to the volume of business and the old in the sector. Finally, this article discusses applications for the manage­ment of inter-organizational networks in order to strengthen the implementation of public policies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
RAMOS-VIDAL, I. Determinants of inter-organizational network formation in the cultural sector. RAE - Revista de Administracao de Empresas , [S. l.], v. 58, n. 1, p. 16–29, 2018. DOI: 10.1590/S0034-759020180102. Disponível em: https://periodicos.fgv.br/rae/article/view/73881. Acesso em: 12 jun. 2024.
Section
Articles

References

Baker, W. (2014). Making pipes, using pipes: How tie initiation, reciprocity, positive emotions and reputation create new organizational social capital. In D. Brass, G. Labianca, A. Mehra, D. Halgin, & S. P. Borgatti (Eds.), Contemporary perspectives on organizational social networks (pp. 57-72). Bradford, UK: Emerald Group Publishing.

Baur, M., Benkert, M., Brandes, U., Cornelsen, S., Gaertler, M., Köpf, B. … Wagner, D. (2002). Visone software for visual social network analysis. In P. Mutzel, M. Jünger, & S. Leipert, Graph Drawing (pp. 463-464). Berlin, Germany: Springer.

Borgatti, S. P., Everett, M., & Freeman, L. C. (2002). UCINET VI Version 1.0. Natick, MA: Analytic Technologies.

Borgatti, S. P., & Halgin, P. (2011). On network theory. Organization Science, 22(5), 1168-1181. doi:10.1287/orsc.1100.0641

Brandes, U., Kenis, P., & Raab, J. (2005). La explicación a través de la visualización de redes. REDES-Revista Hispana para el Análisis de Redes Sociales, 9(6), 1-19.

Burt, R. S., Kilduff, M., & Tasselli, S. (2013). Social network analysis: Foundations and frontiers on advantage. Annual Review of Psychology, 64, 527-547. doi:10.1146/annurev-psych-113011-143828

Calanni, J. C., Siddiki, S. N., Weible, C. M., & Leach, W. D. (2015). Explaining coordination in collaborative partnerships and clarifying the scope of the belief homophily hypothesis. Journal of Public Administration Research and Theory, 25(3), 901-927. doi:10.1093/jopart/mut080

Capone, F., & Lazzeretti, L. (2017). Interorganisational networks and proximity: An analysis of R&D networks for cultural goods. Sinergie Italian Journal of Management, 34, 53-70.

Cheng, J., Romero, D., Meeder, B., & Kleinberg, J. (2011). Predicting reciprocity in social networks. In Privacy, security, risk and trust (passat), (pp. 49-56). IEEE Third International Conference on Social Computing. Boston, MA: IEEE.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3ª Edición). Mahwah, NJ: Lawrence Erlbaum Associates.

Crispeels, T., Willems, J., & Brugman, P. (2015). The relationship between organizational characteristics and membership of a biotechnology industry board-of-directors-network. Journal of Business & Industrial Marketing, 30(3-4), 312-323. doi:10.1108/JBIM-11-2012-0222

Dekker, D., Krackhardt, D., & Snijders, T. A. B. (2007). Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika, 72(4), 563-581. doi:10.1007/s11336-007-9016-1

Ebers, M. (1999). The formation of inter-organizational networks. Oxford, UK: Oxford University Press.

Everett, M., & Borgatti, S. P. (2014). Networks containing negative ties. Social Networks, 38, 111-120. doi:10.1016/j.socnet.2014.03.005

Freeman, L. C. (2000). Visualizing social networks. Journal of Social Structure, 1, 1-15.

Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1(3), 215-239. doi:10.1016/0378-8733(78)90021-7

Granovetter, M. (1985). Economic action and social structure: The problem of embeddedness. American Journal of Sociology, 91(3), 481-510. doi:10.1086/228311

Gulati, R. (1995). Social structure and alliance formation patterns: A longitudinal analysis. Administrative Science Quarterly, 40(4), 619- 652. doi:10.2307/2393756

Hermans, F., Sartas, M., Van Schagen, B., van Asten, P., & Schut, M. (2017). Social network analysis of multi-stakeholder platforms in agricultural research for development: Opportunities and constraints for innovation and scaling. PloS one, 12(2), 1-21. doi:10.1371/journal. pone.0169634

Hollstein, B., & Domínguez, S. (2012). Mixing methods in social network research. Cambridge, MA: Cambridge University Press.

Jansen, D. (2017). Networks, social capital, and knowledge production. In B. Hollstein, Wenzel Matiaske, & Kai-Uwe Schanpp (Eds.), Networked Governance (pp. 15-42). Cham, ZG: Springer International Publishing.

Kim, G. M. (2016). Collaborative innovation with suppliers in a turbulent market. Asian Journal of Technology Innovation, 24(2), 179-201. doi:10.1080/19761597.2016.1186557

Knoke, D., & Yang, S. (2008). Social network analysis. (2nd Ed.). California, CA. Sage Publications Thousand Oacks.

Krackhardt, D. (1988). Predicting with networks: Nonparametric multiple regression analysis of dyadic data. Social Networks, 10(4), 359-381. doi:10.1016/0378-8733(88)90004-4

Krackhardt (1987). QAP partialling as a test of spuriousness. Social Networks, 9(2), 171-186. doi:10.1016/0378-8733(87)90012-8

Labianca, G., & Brass, D. (2006). Exploring the social ledger: Negative relationships and negative asymmetry in social networks in organizations. Academy of Management Review, 31(3), 596-614.

Lange, D., Lee, P. M., & Dai, Y. (2011). Organizational reputation: A review. Journal of Management, 37(1), 153-184. doi:10.1177/0149206310390963

Lecy, J. D., Mergel, I. A., & Schmitz, H. P. (2014). Networks in public administration: Current scholarship in review. Public Management Review, 16(5), 643-665. doi:10.1080/14719037.2012.743577

Ma, X., Yao, X., & Xi, Y. (2009). How do inter-organizational and interpersonal networks affect a firm’s strategic adaptive capability in a transition economy?. Journal of Business Research, 62, 1087-1095. doi:10.1016/j.jbusres.2008.09.008

Martin-Rios, C., & Erhardt, N. (2017). Small business activity and knowledge exchange in informal interfirm networks. International Small Business Journal, 35(3), 285-305. doi:10.1177/0266242616667540

McPherson, M., Smith-Lovin, L., & Cook, J. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415- 444. doi:10.1146/annurev.soc.27.1.415

Otte-Trojel, T., Rundall, T. G., de Bont, A., & van de Klundert, J. (2017). Can relational coordination help inter-organizational networks overcome challenges to coordination in patient portals?. International Journal of Healthcare Management, 10(2), 75-83. doi:10.1080/20479700.20 15.1101911

Provan, K. G., Huang, K., & Milward, B. (2009). The evolution of structural embeddedness and organizational social outcomes in a centrally governed health and human services network. Journal of Public Administration Research and Theory, 19(4), 873-893. doi:10.1093/ jopart/mun036

Ramos-Vidal, I. (2017). Detecting key actors in interorganizational networks. Cuadernos de Gestión, 17(2), 63-86. doi:10.5295/cdg.140512ir

Ramos-Vidal, I., & Maya-Jariego, I. (2013). Alianzas y redes de colaboración entre las agrupaciones culturales de las Artes Escénicas en Andalucía. Empiria. Revista de Metodología de Ciencias Sociales, (26), 15-34. doi:10.5944/empiria.26.7151

Sánchez, A. R. P., & Vega, M. Á. F. (2011). La industria cultural en Andalucía: Un estudio comparativo en el contexto de las regiones españolas (No. E2011/02). Sevilla, España: Centro de Estudios Andaluces.

Sytch, M., Tatarynowicz, A., & Gulati, R. (2012). Toward a theory of extended contact: The incentives and opportunities for bridging across network communities. Organization Science, 23(6), 1658- 1681. doi:10.1287/orsc.1110.0712

Tomasello, M. V., Perra, N., Tessone, C. J., Karsai, M., & Schweitzer, F. (2014). The role of endogenous and exogenous mechanisms in the formation of R&D networks. Scientific Reports, 4. doi:10.1038/srep05679

Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative Science Quarterly, 42(1), 35-67. doi:10.2307/2393808

Uzzi, B., & Spiro, J. (2005). Collaboration and creativity: The small world problem. American Journal of Sociology, 111(2), 447-504. doi:10.1086/432782

Valente, T. (1995). Network models of the diffusion of innovations. Cresskill NJ: Hampton Press.

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. New York, NY: Cambridge University Press.

Watts, D., & Strogatz, S. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440-442. doi:10.1038/30918

Worrell, J., Wasko, M., & Johnston, A. (2013). Social network analysis in accounting information systems research. International Journal of Accounting Information Systems, 14(2), 127-137. doi:10.1016/j. accinf.2011.06.002

Zajocs, R., & Edwards, E. (2006). What explains community coalition effectiveness? A review of the literature. American Journal of Preventive Medicine, 30(4), 351-361. doi:10.1016/j.amepre.2005.12.004