Information management capability and Big Data strategy implementation

Main Article Content

Antonio Carlos Gastaud Maçada
Rafael Alfonso Brinkhues
José Carlos da Silva Freitas Junior


Firms are increasingly interested in developing Big Data strategies. However, the expectation of the value of these benefits and of the costs involved in acquiring or developing these solutions are not homogeneous for all firms, which generates competitive imperfections in the market for strategic resources. Information Management Capability (IMC) aims to provide the required unique insights for successful Big Data strategies. This study analyzes IMC as an imperfection agent in the market for strategic Big Data resources. The hypotheses were tested using a survey of 101 respondents and analyzed with SEM-PLS. The results indicate the positive influence of IMC on value expectation and a negative effect on cost expectation. Cost expectation inversely
affects the intent to purchase or develop the resources to implement Big Data strategies. Value expectation has a positive effect on both intents.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
MAÇADA, A. C. G.; BRINKHUES, R. A.; FREITAS JUNIOR, J. C. da S. Information management capability and Big Data strategy implementation. RAE - Revista de Administracao de Empresas , [S. l.], v. 59, n. 6, p. 379–388, 2019. DOI: 10.1590/10.1590/S0034-759020190604. Disponível em: Acesso em: 17 apr. 2024.


Agarwal, R., & Dhar, V. (2014). Editorial-Big Data, data science, and analytics: The opportunity and challenge for IS research. Information Systems Research, 25(3), 443-448. doi:10.1287/isre.2014.0546

Barney, J. (1986). Strategic factor markets: Expectations, luck, and business strategy. Management Science, 32(10), 1231-1241.

Brinkhues, R., Maçada, A., & Casalinho, G. (2014). Information management capabilities: Antecedents and consequences. In Twentieth Americas Conference on Information Systems. Savannah, 1-11. Retrieved from https://pdfs.semanticscholar. org/1503/001cb9628f35acd727c4b31b02f613f6523c.pdf

Brown, B., Chui, M., & Manyika, J. (2011). Are you ready for the era of “Big Data”? Retrieved from download-mckinsey-quarterly-/1148544_1/blobBinary/Study- McKinsey-Big-data.pdf [Accessed November 23, 2014].

Carmichael, F., Palacios-Marques, D., & Gil-Pechuan., I. (2011). How to create information management capabilities through web 2.0. The Service Industries, 31(10), 1613-1625. doi:10.1080/02642069.2010. 485635

Chiang, R. H. L., Grover, V., Liang, T.-P., & Zhang, D. (2018). Special Issue: Strategic value of Big Data and business analytics. Journal of Management Information Systems, 35(2), 383-387. doi:10.1080/074 21222.2018.1451950

Chin, W. W. (1998). The partial least squares approach for structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295-236). London, UK: Laurence Erlbaum Associates.

Ciborra, C. U. (1996). Teams, markets, and systems: Business innovation and information technology. New York, NY: Cambridge University Press. Coase, R. H. (1937). The nature of the firm. Economica, 4(16), 386-405. doi:10.1111/j.1468-0335.1937.tb00002.x

Cohen, J. (1988). Statistical power analysis for the behavioral sciences 2nd ed. New Jersey, NJ: Lawrence Erlbaum Associates. Cordella, A. (2006). Transaction costs and information systems: Does IT add up? Journal of Information Technology, 21(3), 195-202. doi:10.1057/palgrave.jit.2000066

Davenport, T. H. (2014). Big Data at work: Dispelling the myths, uncovering the opportunities. Boston, MA: Harvard Business School Publishing.

Davenport, T. H., Barth, P., & Bean, R. (2012). How “Big Data” is different. Sloan Management Review, 54(1), 21–24.

Davenport, T. H., & Bean, R. (2018). Data and innovation: How Big Data and AI are driving business innovation. New Vantage Partners LLC. Retrieved from uploads/2018/01/Big-Data-Executive-Survey-2018-Findings.pdf

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. doi:10.3758/BRM.41.4.1149

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi:10.2307/3151312386 © RAE | São Paulo | 59(6) | November-December 2019 | 000-00

Gartner. (2014). Newsroom Gartner survey reveals that 73 percent of organizations have invested or plan to invest in Big Data in the next two years. Retrieved from id/2848718

Günther, W. A., Rezazade Mehrizi, M. H., Huysman, M., & Feldberg, F. (2017). Debating big data: A literature review on realizing value from big data. Journal of Strategic Information Systems, 26(3), 191-209. doi:10.1016/j.jsis.2017.07.003

Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage Publications.

Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Retrieved from

International Data Corporation. (2018). Revenues for Big Data and business analytics solutions forecast to reach $260 billion in 2022, Led by the banking and manufacturing industries, according to IDC. Retrieved from jsp?containerId=prUS44215218

Johnson, J. (2012). Big Data + Big Analytics = Big Opportunity. Financial Executive, 28(6), 50–53.

Kwon, O., Lee, N., & Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34(3), 387-394. doi:10.1016/j.ijinfomgt.2014.02.002

Lakoju, M., & Serrano, A. (2017). Framework for aligning Big-Data strategy with organizational goals. Proceedings of Twenty-third Americas Conference on Information Systems, Boston.

McAfee, A., & Brynjolfsson, E. (2012). Big Data: The management revolution. MIT Sloan Management Review, 90(10), 61–68.

Mckendrick, J. (2013). 2013 Big Data opportunities survey. Unisphere Research. New Providence. Issues/5375-Big-Data-Big-Challenges-Big-Opportunities-2012-IOUG-Big-Data-Strategies-Survey.htm

Mithas, S., Lee, M., Earley, S., Murugesan, S., & Djavanshir, R. (2013). Leveraging Big Data and business analytics. IT Professional, 15(6), 18-20. doi:10.1109/MITP.2013.95

Mithas, S., Ramasubbu, N., & Sambamurthy, V. (2011). How information management capability influences firm performance. MIS Quarterly, 35(1), 237-256.

Mohanty, S., Jagadeesh, M., & Srivatsa, H. (2013). The new information management paradigm. In S.

Mohanty, M. Jagadeesh, & H. Srivatsa, Big Data Imperatives (pp. 25-44). Berkeley, CA: Apress. Optimal WorkShop (2017). Card sorting 101. Your guide to creating and running an effective card sort. Retrieved from https://www. Phadtare, M. (2011). Strategic management: Concepts and cases. New Delhi, India: PHI Learning Pvt. Ltd. Ringle, C. M., Silva, D., & Bido, D. de S. (2014). Modelagem de equações estruturais com utilização do Smartpls. Revista Brasileira de Marketing, 13(2), 56-73. doi:10.5585/remark.v13i2.2717

Tabesh, P., Mousavidin, E., & Hasani, S. (2019). Implementing big data strategies: A managerial perspective. Business Horizons, 62(3), 347– 358. doi:10.1016/j.bushor.2019.02.001

Vasconcelos, I. F. G. De, Mascarenhas, A. O., & Vasconcelos, F. C. De, (2006). Gestão do paradoxo “passado versus futuro”: Uma visão transformacional da gestão de pessoas. RAE-Eletrônica, 5(1). Retrieved from

Wang, Y., Kung, L. A., Wang, W. Y. C., & Cegielski, C. G. (2018). An integrated big data analytics-enabled transformation model: Application to health care. Information and Management, 55(1), 64- 79. doi:10.1016/

White, M. (2012). Digital workplaces: Vision and reality. Business Information Review, 29(4), 205-214. doi:10.1177/0266382112470412