An analysis of determinants of the adoption of Mobile Health (mHealth)
Main Article Content
Abstract
Given the increasing use of the Internet and mobile technologies, this study is pertinent as it seeks to analyze the factors
that determine the adoption of Mobile Health (mHealth). To that end, the proposed conceptual model integrates the Unified
Theory of Acceptance and Use of Technology (UTAUT2), Perceived Health Condition, eHealth Literacy and Perceived Health
Competence as determinants of the adoption of mHealth. To answer the research questions, we used an online questionnaire
administered to a non-probabilistic sample of Brazilian and Portuguese individuals who have or have not used mHealth. Data
were analyzed using SPSS and SmartPLS3 software. The results indicate that adoption of mHealth is heavily impacted only by
some UTAUT2 variables. The 'Performance Expectancy' dimension was found to heavily impact the adoption of mHealth among
both users and non-users.
Downloads
Metrics
Article Details
A RAE compromete-se a contribuir com a proteção dos direitos intelectuais do autor. Nesse sentido:
- adota a licença Creative Commoms BY (CC-BY) em todos os textos que publica, exceto quando houver indicação de específicos detentores dos direitos autorais e patrimoniais;
- adota software de detecção de similaridades;
- adota ações de combate ao plagio e má conduta ética, alinhada às diretrizes do Committee on Publication Ethics (COPE)
References
Agarwal, N. K., Wang, Z., Xu, Y., & Poo, D. C. C. (2007). Factors
affecting 3G adoption: An empirical study. PACIS 2007
Proceedings, Paper 3, 256-270. Retrieved from http://aisel.
aisnet.org/pacis2007/3
Anantraman, V., Mikkelsen, T., Khilnani, R., Kumar, V. S.,
Pentland, A., & Ohno-Machado, L. (2002). Open source
handheld-based EMR for paramedics working in rural areas.
AMIA - Annual Symposium Proceedings. AMIA Symposium, 12-
doi: D020002441[pii]
Bachmann, J. M., Goggins, K. M., Nwosu, S. K., Schildcrout, J.
S., Kripalani, S., & Wallston, K. A. (2016). Perceived health
competence predicts health behavior and health-related
quality of life in patients with cardiovascular disease. Patient
Education and Counseling, 99, 2071-2079. doi: 10.1016/j.
pec.2016.07.020
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural
equation models. Journal of the Academy of Marketing
Science, 16(1), 74-94. doi: 10.1007/bf02723327
Barrett, J. R., Strayer, S. M., & Schubart, J. R. (2004). Assessing
medical residents’ usage and perceived needs for personal
digital assistants. International Journal of Medical Informatics,
(1), 25-34. doi: 10.1016/j.ijmedinf.2003.12.005
Basu, A., & Dutta, M. J. (2008). The relationship between
health information seeking and community participation:
The roles of health information orientation and
efficacy. Health Communication, 23(1), 70-79. doi:
1080/10410230701807121
Becker, M. H., & Janz, N. K. (1984). The health belief model: A
decade later. Health Education Quarterly, 11(1), 1-47. doi:
1177/109019818401100101
Bernhardt, J. M., McClain, J., & Parrott, R. L. (2004). Online health
communication about human genetics : Perceptions and
preferences of internet users. CyberPsychology and Behavior,
(6), 728-733. doi: 10.1089/cpb.2004.7.728
Biesdorf, S., & Niedermann, F. (2014). Healthcare’s digital future.
McKinsey & Company.
Bitner, M. J., Brown, S. W., & Meuter, M. L. (2000).
Technology infusion in service encounters. Journal of
the Academy of Marketing Science, 28(1), 138-149. doi:
1177/0092070300281013
Bodie, G. D., & Dutta, M. J. (2008). Understanding health literacy
for strategic health marketing: eHealth literacy, health
disparities, and the digital divide. Health Marketing Quarterly,
(1-2), 175-203. doi: 10.1080/07359680802126301
Brown, S. A., & Venkatesh, V. (2005). Model of adoption and
technology in households: A baseline model test and
extension incorporating household life cycle. MIS Ouarterly,
(3), 399-426. doi: 10.2307/25148690
Burkhardt, M. E., & Brass, D. J. (1990). Changing patterns or
patterns of change: The effects of a change in technology on
social network structure and power. Administrative Science
Quarterly, 35(1), 104-127. doi: 10.2307/2393552
Cameron, J. D., Ramaprasad, A., & Syn, T. (2017). An ontology
of and roadmap for mHealth research. International
Journal of Medical Informatics, 100, 16-25. doi: 10.1016/j.
ijmedinf.2017.01.007
Carlos, D. A. O., Magalhães, T. O., Vasconcelos, J. E., Filho, Silva, R.
M., & Brasil, C. C. P. (2016, setembro). Concepção e avaliação
de tecnologia mHealth para promoção da saúde vocal. Risti -
Revista Ibérica de Sistemas e Tecnologias de Informação, (19),
-60. doi: 10.17013/risti.19.46-60
Childers, T. L., Carr, C. L., Peck, J., & Carson, S. (2001). Hedonic
and utilitrian motivations for online retail shopping behavior.
Journal of Retailing, 77, 511-535. doi: 10.1016/S0022-
(01)00056-2
Cho, J., Park, D., & Lee, H. E. (2014). Cognitive factors of using
health apps: Systematic analysis of relationships among
health consciousness, health information orientation,
eHealth literacy, and health app use efficacy. Journal of
Medical Internet Research, 16(5), e125. doi: 10.2196/jmir.3283
Chong, A. Y. L. (2013). A two-staged SEM-neural network
approach for understanding and predicting the determinants
of m-commerce adoption. Expert Systems with Applications,
(4), 1240-1247. doi: 10.1016/j.eswa.2012.08.067
Cotten, S. R., & Gupta, S. S. (2004). Characteristics of online
and offline health information seekers and factors that
discriminate between them. Social Science and Medicine,
(9), 1795-1806. doi: 10.1016/j.socscimed.2004.02.020
Déglise, C., Suggs, L. S., & Odermatt, P. (2012). Short Message
Service (SMS) applications for disease prevention in
developing countries. Journal of Medical Internet Research,
(1), e3. doi: 10.2196/jmir.1823
Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of
price, brand, and store information on buyers’ product
evaluations. Journal of Marketing Research, 28(3), 307-319.
doi: 10.2307/3172866
Duarte, P. A. O., & Raposo, M. L. B. (2010). A PLS model to study
brand preference: An application to the mobile phone market.
In Handbook of partial least squares, 449-485. Springer,
Berlin, Heidelberg. doi: 10.1007/978-3-540-32827-8_21
Duque, C., Mamede, J., & Morgado, L. (2017). Iniciativas de
mHealth em Portugal. In: CISTI 2017: 12th Iberian Conference
on Information Systems and Technologies. 1-6, IEEE. doi:
23919/CISTI.2017.7975803
Dwivedi, Y. K., Shareef, M. A., Simintiras, A. C., Lal, B., &
Weerakkody, V. (2016). A generalised adoption model for
services: A cross-country comparison of mobile health
(m-health). Government Information Quarterly, 33(1), 174-187.
doi: 10.1016/j.giq.2015.06.003
Escobar-Rodríguez, T., & Carvajal-Trujillo, E. (2014). Online
purchasing tickets for low cost carriers: An application of the
unified theory of acceptance and use of technology (Utaut)
model. Tourism Management, 43, 70-88. doi: 10.1016/j.
tourman.2014.01.017
Finkelstein, M. M. (2000). Hypertension, self-perceived health
status and use of primary care services. Canadian Medical
Association Journal, 162(1), 45-46. Retrieved from: https://
www.cmaj.ca/content/162/1/45/tab-article-info
Fornell, C., & Larcker, D. F. (1981). Structural equation models
with unobservable variables and measurement error: Algebra
and statistics. Journal of Marketing Research, 18(3), 382. doi:
2307/3150980
Fox, S., & Duggan, M. (2012). Mobile Health 2012. Pew
Research Center’s Internet & American Life Project. Retrieved
from http://www.pewinternet.org/2012/11/08/mobilehealth-2012/
Free, C., Phillips, G., Felix, L., Galli, L., Patel, V., & Edwards,
P. (2010). The effectiveness of M-health technologies for
improving health and health services: a systematic review
protocol. BMC Research Notes, 3, 250. doi: 10.1186/1756-
-3-250
Gadelha, C. A. G., & Costa, L. S. (2012). Saúde e desenvolvimento
no Brasil: Avanços e desafios. Revista de Saúde Pública, 46(1),
-20. doi: 10.1590/s0034-89102012005000062
Heijden, H. Van der. (2004). User acceptance of hedonic
information systems. MIS Quarterly, 28(4), 695-704. doi:
2307/25148660
Katz, R., & Tushman, M. (1979). Communication patterns,
project performance, and task characteristics: An empirical
evaluation and integration in an R&D setting. Organizational
Behavior and Human Performance, 23(2), 139-162. doi:
1016/0030-5073(79)90053-9
Kim, S. S., & Malhotra, N. K. (2005). A longitudinal model of
continued IS use: An integrative view of four mechanisms
underlying postadoption phenomena. Management Science,
(5), 741-755. doi: 10.1287/mnsc.1040.0326
Kim, S. S., Malhotra, N. K., & Narasimhan, S. (2005). Research
note – Two competing perspectives on automatic use: A
theoretical and empirical comparison. Information Systems
Research, 16(4), 418-432. doi: 10.1287/isre.1050.0070
Koop, A., & Mösges, R. (2002). The use of handheld computers
in clinical trials. Controlled Clinical Trials, 23(5), 469-480. doi:
1016/S0197-2456(02)00224-6
Kotz, D., Avancha, S., & Baxi, A. (2009). A privacy framework for
mobile health and home-care systems. Proceedings of the
First ACM Workshop on Security and Privacy in Medical and
Home-Care Systems – Spimacs ’09, November 1, 1-12. doi:
1145/1655084.1655086
Kratzke, C., & Cox, C. (2012). Smartphone technology and apps:
Rapidly changing health promotion. International Electronic
Journal of Health Education, 15, 72-82. doi: ISSN-1529-1944
Kuo, Y. F., & Yen, S. N. (2009). Towards an understanding of the
behavioral intention to use 3G mobile value-added services.
Computers in Human Behavior, 25(1), 103-110. doi: 10.1016/j.
chb.2008.07.007
Laxminarayan, S., & Istepanian, R. S. H. (2000). Unwired E-MED:
The next generation of wireless and Internet telemedicine
systems. IEEE Transactions on Information Technology in
Biomedicine, 4(3), 189-193. doi: 10.1109/TITB.2000.5956074
Leal, S. A. (2009). Estado de saúde auto-percebido: Índice
de massa corporal e percepção da imagem corporal em
utentes dos cuidados de saúde primários (Dissertação de
mestrado, Faculdade de Psicologia e Ciências de Educação ,
Universidade de Lisboa, Lisboa, Portugal).
Lee, K., Hoti, K., Hughes, J. D., & Emmerton, L. M. (2015).
Consumer use of “Dr Google”: A survey on health informationseeking behaviors and navigational needs. Journal of Medical
Internet Research, 17(12), e288. doi: 10.2196/jmir.4345
Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits
the predictive power of intention: The case of information
systems continuance. MIS Quarterly, 31(4), 705-737. doi:
2307/25148817
Luarn, P., & Lin, H.-H. (2005). Toward an understanding of the
behavioral intention to use mobile banking. Computers
in Human Behavior, 21(6), 873-891. doi: 10.1016/j.
chb.2004.03.003
Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multidimensional trust and multi-faceted risk in initial acceptance
of emerging technologies: An empirical study of mobile
banking services. Decision Support Systems, 49(2), 222-234.
doi: 10.1016/j.dss.2010.02.008
Mackert, M., Mabry-Flynn, A., Champlin, S., Donovan, E. E., &
Pounders, K. (2016). Health literacy and health information
technology adoption: The potential for a new digital divide.
Journal of Medical Internet Research, 18(10), e264. doi:
2196/jmir.6349
Miltgen, C. L., Popovič, A., & Oliveira, T. (2013). Determinants
of end-user acceptance of biometrics: Integrating the “big
” of technology acceptance with privacy context. Decision
Support Systems, 56, 103-114. doi: 10.1016/j.dss.2013.05.010
Neter, E., & Brainin, E. (2012). eHealth literacy: Extending the
digital divide to the realm of health information. Journal of
Medical Internet Research, 14(1), e19. doi: 10.2196/jmir.1619
Norman, C. D., & Skinner, H. A. (2006a). eHEALS: The eHealth
literacy scale. Journal of Medical Internet Research, 8(4), e27.
doi: 10.1525/cmr.2014.57.1.67
Norman, C. D., & Skinner, H. A. (2006b). eHealth literacy:
Essential skills for consumer health in a networked world.
Journal of Medical Internet Research, 8(2), 1-11. doi: 10.2196/
jmir.8.2.e9
Nunnally, J., & Bernstein, I. (1994). Psychometric theory (3rd ed.).
New York, USA: McGraw-Hill.
Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014).
Extending the understanding of mobile banking adoption:
When Utaut meets TTF and ITM. International Journal of
Information Management, 34(5), 689-703. doi: 10.1016/j.
ijinfomgt.2014.06.004
Ong, J. W., Poong, Y. S., & Ng, T. H. (2008). 3G services adoption
among university students: Diffusion of innovation theory.
Communications of the IBIMA, 3(16), 114-121.
Rai, A., Chen, L., Pye, J., & Baird, A. (2013). Understanding
determinants of consumer mobile health usage intentions,
assimilation, and channel preferences. Journal of Medical
Internet Research, 15(8), e149. doi: 10.2196/jmir.2635
Research2guidance. (2016). mHealth App Developer Economics
Retrieved from https://research2guidance.com/r2g/
r2g-mHealth-App-Developer-Economics-2016.pdf
Riffai, M. M. M. A., Grant, K., & Edgar, D. (2012). Big TAM in
Oman: Exploring the promise of on-line banking, its adoption
by customers and the challenges of banking in Oman.
International Journal of Information Management, 32(3), 239-
doi: 10.1016/j.ijinfomgt.2011.11.007
Riley, W. T., Rivera, D. E., Atienza, A. A., Nilsen, W., Allison, S.
M., & Mermelstein, R. (2011). Health behavior models in the
age of mobile interventions: Are our theories up to the task?
Translational Behavioral Medicine, 1(1), 53-71. doi: 10.1007/
s13142-011-0021-7
Ringle, C. M., Wende, S., & Becker, J. M. (2015). SmartPLS 3:
SmartPLS GmbH, Boenningstedt. Journal of Service Science
and Management, 10(3). Retrivied from: https://www.scirp.
org/journal/JSSM/
Shareef, M. A., Kumar, V., & Kumar, U. (2014). Predicting mobile
health adoption behaviour: A demand side perspective.
Journal of Customer Behaviour, 13(3), 187-205. doi: 10.1362/1
X14103453768697
Shields, M., & Shooshtari, S. (2001). Determinants of selfperceived health. Health Reports – Statistics Canada,
(1), 35-52. Retrieved from: https://pubmed.ncbi.nlm.nih.
gov/15069807
Smith, M. S., Wallston, K. A., & Smith, C. A. (1995). The
development and validation of the perceived health
competence scale. Health Education Research, 10(1), 51-64.
doi: 10.1093/her/10.1.51
Steinhubl, S. R., Muse, E. D., & Topol, E. J. (2015). The emerging
field of mobile health. Science Translational Medicine, 7(283),
rv3-283rv3. doi: 10.1126/scitranslmed.aaa3487
Sweileh, W. M., Al-Jabi, S. W., AbuTaha, A. S., Zyoud, S. H.,
Anayah, F. M. A., & Sawalha, A. F. (2017). Bibliometric analysis
of worldwide scientific literature in mobile – health: 2006 –
BMC Medical Informatics and Decision Making, 17 (1),
doi: 10.1186/s12911-017-0476-7
Tan, P. J. B. (2013). Applying the Utaut to understand factors
affecting the use of english e-learning websites in Taiwan.
SAGE Open, 3(4), 1-12. doi: 10.1177/2158244013503837
Thong, J. Y., Hong, S. J., & Tam, K. Y. (2006). The effects of postadoption beliefs on the expectation-confirmation model for
information technology continuance. International Journal
of Human Computer Studies, 64(9), 799-810. doi: 10.1016/j.
ijhcs.2006.05.001
Tomás, C. C., Queirós, P. J. P., & Ferreira, T. J. R. (2014). Análise
das propriedades psicométricas da versão portuguesa de um
instrumento de avaliação de e-Literacia em saúde. Revista
de Enfermagem Referência, série IV(2), 19-28. Retrieved from
http://www.scielo.gpeari.mctes.pt/scielo.php?script=sci_
arttext&pid=S0874-02832014000200003&lang=pt. doi:
12707/riv14004
Venkatesh, V., & Morris, G. M. (2000). Why don’t men ever stop
to ask for direction? Gender, social influence and their role in
technology acceptance and usage behaviour. MIS Quarterly,
(1), 115-139. doi: 10.2307/3250981
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003).
User acceptance of information technology: Toward a unified
view. MIS Quarterly, 27(3), 425-478. doi: 10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer
acceptance and use of information technology: Extending
the unified theory of acceptance and use of technology. MIS
Quarterly, 36(1), 157-178. doi: 10.2307/41410412
Wei, T. T., Marthandan, G., Chong, A. Y. L., Ooi, K. B., & Arumugam,
S. (2009). What drives Malaysian m-commerce adoption? An
empirical analysis. Industrial Management & Data Systems,
(3), 370-388. doi: 10.1108/02635570910939399
World Health Organization. (2019). WHO guideline: Recommendations on digital interventions for health system strengthening. Geneva, Switzerland. Licence: CC BY-NC-SA 3.0 IGO.
Xin, X. (2004). A model of 3G adoption. AMCIS 2004 Proceedings.
Paper 329, 2755-2762. Retrieved from http://aisel.aisnet.org/
amcis2004/329