Cryptocurrency and financial system: Systematic literature review

Main Article Content

Viviane de Senna
https://orcid.org/0000-0003-2924-5813
Adriano Mendonça Souza
https://orcid.org/0000-0002-1562-2246

Abstract

Cryptocurrencies are assets with transactions managed by new methods compared to traditional transactions mediated by Stock Exchanges. The insertion of these assets can change the economic system. The objective
of the study is to analyze a set of articles published in international databases of scientific content on cryptocurrencies and the relations with the Stock Exchanges to understand the evolution of the theme over time. The consultation was carried out in the Scopus and Web of Science databases, where 196 articles were analyzed, these indicated learning algorithms, electronic trading, financial and digital markets thematic evolution. The main studies focused on investigating the behavior of cryptocurrencies in the face of market variables, cryptocurrencies as a safe haven or diversification, analysis of prices and the impact of emotional value on cryptocurrencies. The most relevant articles, the citations and co-citations network of these, provided insights into not yet known literature, such authors are Baur et al., 2018; Ji et al., 2020; Peng et al., 2018; Symitsi & Chalvatzis, 2019; Urquhart, 2017.

Downloads

Download data is not yet available.

 

 

 

 

Metrics

Metrics Loading ...

Article Details

How to Cite
DE SENNA, V.; SOUZA, A. M. Cryptocurrency and financial system: Systematic literature review. RAE - Revista de Administracao de Empresas , [S. l.], v. 63, n. 4, p. e2022–0019, 2023. DOI: 10.1590/S0034-759020230403. Disponível em: https://periodicos.fgv.br/rae/article/view/89819. Acesso em: 22 feb. 2024.
Section
Articles

References

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Bariviera, A. F., Zunino, L., & Rosso, O. A. (2018). An analysis of high-frequency cryptocurrencies prices dynamics using permutation-information-theory quantifiers. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7), 1–17. https://doi.org/10.1063/1.5027153

Baumeister, R. F., & Leary, M. R. (1997). Writing Narative Literature Reviews - Bausmeister & Leary. Review of General Psychology, 1(3), 311–320.

Baur, D. G., Hong, K., & Lee, A. D. (2018). Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions and Money, 54, 177–189. https://doi.org/10.1016/j.intfin.2017.12.004

Begušić, S., Kostanjčar, Z., Eugene Stanley, H., & Podobnik, B. (2018). Scaling properties of extreme price fluctuations in Bitcoin markets. Physica A: Statistical Mechanics and Its Applications, 510, 400–406. https://doi.org/10.1016/j.physa.2018.06.131

Bhandarkar, V. V, Bhandarkar, A. A., & Shiva, A. (2019). Digital Stocks using blockchain technology the possible future of stocks? International Journal of Management, 10(3), 44–49. https://doi.org/10.34218/IJM.10.3.2019/005

Bouri, E., Lucey, B., & Roubaud, D. (2020). Cryptocurrencies and the downside risk in equity investments. Finance Research Letters, 33, 101211. https://doi.org/10.1016/j.frl.2019.06.009

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5, 146–166. https://doi.org/10.1016/j.joi.2010.10.002

da Gama Silva, P. V. J., Klotzle, M. C., Pinto, A. C. F., & Gomes, L. L. (2019). Herding behavior and contagion in the cryptocurrency market. Journal of Behavioral and Experimental Finance, 22, 41–50. https://doi.org/10.1016/j.jbef.2019.01.006

da Silva Filho, A. C., Maganini, N. D., & de Almeida, E. F. (2018). Multifractal analysis of Bitcoin market. Physica A: Statistical Mechanics and Its Applications, 512, 954–967. https://doi.org/10.1016/j.physa.2018.08.076

Drożdż, S., Gȩbarowski, R., Minati, L., Oświȩcimka, P., & Wa̧torek, M. (2018). Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7), 071101. https://doi.org/10.1063/1.5036517

Eliacik, A. B., & Erdogan, N. (2018). Influential user weighted sentiment analysis on topic based microblogging community. Expert Systems with Applications, 92, 403–418. https://doi.org/10.1016/j.eswa.2017.10.006

Engle, R. (2002). Dynamic Conditional Correlation. Journal of Business & Economic Statistics, 20(3), 339–350. https://doi.org/10.1198/073500102288618487

Eross, A., McGroarty, F., Urquhart, A., & Wolfe, S. (2019). The intraday dynamics of bitcoin. Research in International Business and Finance, 49, 71–81. https://doi.org/10.1016/j.ribaf.2019.01.008

Feng, W., Wang, Y., & Zhang, Z. (2018). Informed trading in the Bitcoin market. Finance Research Letters, 26, 63–70. https://doi.org/10.1016/j.frl.2017.11.009

Gajardo, G., Kristjanpoller, W. D., & Minutolo, M. (2018). Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen? Chaos, Solitons & Fractals, 109, 195–205. https://doi.org/10.1016/j.chaos.2018.02.029

Galvão, M. C. B., & Ricarte, I. L. M. (2019). REVISÃO SISTEMÁTICA DA LITERATURA: CONCEITUAÇÃO, PRODUÇÃO E PUBLICAÇÃO. Logeion: Filosofia Da Informação, 6(1), 57–73. https://doi.org/10.21728/logeion.2019v6n1.p57-73

Garcia, D., & Schweitzer, F. (2015). Social signals and algorithmic trading of Bitcoin. Royal Society Open Science, 2(9), 150288. https://doi.org/10.1098/rsos.150288

Harris, L. (1991). Stock Price Clustering and Discreteness. The Review of Financial Studies, 4(3), 389–415.

Higgins, J. P., & Green, S. (2008). Cochrane Handbook for Systematic Reviews of Interventions. In J. P. Higgins & S. Green (Eds.), Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series, 1-649. Wiley.

Ikenberry, D. L., & Weston, J. P. (2007). Clustering in US Stock Prices after Decimalisation. European Financial Management, 14(1), 30–54. https://doi.org/10.1111/j.1468-036X.2007.00410.x

Ilha, P. C. da S., Piacenti, C. A., & Leismann, E. L. (2018). Uma Análise Comparativa da Competitividade Econômico-financeira das Cooperativas Agroindustriais do Oeste do Paraná. Revista de Economia e Sociologia Rural, 56(1), 91–106. https://doi.org/10.1590/1234-56781806-94790560106

Ji, Q., Zhang, D., & Zhao, Y. (2020). Searching for safe-haven assets during the COVID-19 pandemic. International Review of Financial Analysis, 71, 101526. https://doi.org/10.1016/j.irfa.2020.101526

Kamran, M., Butt, P., Abdel-Razzaq, A., & Djajadikerta, H. G. (2022). Is Bitcoin a safe haven? Application of FinTech to safeguard Australian stock markets. Studies in Economics and Finance, 39(3), 386–402. https://doi.org/10.1108/SEF-05-2021-0201

Kliber, A., Marszałek, P., Musiałkowska, I., & Świerczyńska, K. (2019). Bitcoin: Safe haven, hedge or diversifier? Perception of bitcoin in the context of a country’s economic situation — A stochastic volatility approach. Physica A: Statistical Mechanics and Its Applications, 524, 246–257. https://doi.org/10.1016/j.physa.2019.04.145

Kristjanpoller, W., & Bouri, E. (2019). Asymmetric multifractal cross-correlations between the main world currencies and the main cryptocurrencies. Physica A: Statistical Mechanics and Its Applications, 523, 1057–1071. https://doi.org/10.1016/j.physa.2019.04.115

Kurka, J. (2019). Do cryptocurrencies and traditional asset classes influence each other? Finance Research Letters, 31, 38–46. https://doi.org/10.1016/j.frl.2019.04.018

Liang, J., Li, L., & Zeng, D. (2018). Evolutionary dynamics of cryptocurrency transaction networks: An empirical study. PLOS ONE, 13(8), e0202202. https://doi.org/10.1371/journal.pone.0202202

Mensi, W., Sensoy, A., Aslan, A., & Kang, S. H. (2019). High-frequency asymmetric volatility connectedness between Bitcoin and major precious metals markets. The North American Journal of Economics and Finance, 50, 101031. https://doi.org/10.1016/j.najef.2019.101031

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. www.bitcoin.org

Panagiotidis, T., Stengos, T., & Vravosinos, O. (2019a). The effects of markets, uncertainty and search intensity on bitcoin returns. International Review of Financial Analysis, 63, 220–242. https://doi.org/10.1016/j.irfa.2018.11.002

Peng, Y., Albuquerque, P. H. M., Camboim de Sá, J. M., Padula, A. J. A., & Montenegro, M. R. (2018). The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with Support Vector Regression. Expert Systems with Applications, 97, 177–192. https://doi.org/10.1016/j.eswa.2017.12.004

Poyser, O. (2019). Exploring the dynamics of Bitcoin’s price: a Bayesian structural time series approach. Eurasian Economic Review, 9(1), 29–60. https://doi.org/10.1007/s40822-018-0108-2

Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annual Review of Psychology, 70(1), 747–770. https://doi.org/10.1146/annurev-psych-010418-102803

Stosic, D., Stosic, D., Ludermir, T. B., & Stosic, T. (2019). Multifractal behavior of price and volume changes in the cryptocurrency market. Physica A: Statistical Mechanics and Its Applications, 520, 54–61. https://doi.org/10.1016/j.physa.2018.12.038

Symitsi, E., & Chalvatzis, K. J. (2019). The economic value of Bitcoin: A portfolio analysis of currencies, gold, oil and stocks. Research in International Business and Finance, 48(C), 97–110. https://doi.org/10.1016/j.ribaf.2018.12.001

The Campbell Collaboration. (2014). Campbell Collaboration Systematic Reviews: Policies and Guidelines. https://doi.org/10.4073/cpg.2016.1

Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning & Control, 27(5), 408–420. https://doi.org/10.1080/09537287.2015.1129464

Thorne, S., Jensen, L., Kearney, M. H., Noblit, G., & Sandelowski, M. (2004). Qualitative Metasynthesis: Reflections on Methodological Orientation and Ideological Agenda. Qualitative Health Research, 14(10), 1342–1365. https://doi.org/10.1177/1049732304269888

Tiwari, A. K., Raheem, I. D., & Kang, S. H. (2019). Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model. Physica A: Statistical Mechanics and Its Applications, 535, 122295. https://doi.org/10.1016/j.physa.2019.122295

Tiwari, A. K., Selmi, R., & Hammoudeh, S. (2018). Efficiency or speculation? A dynamic analysis of the Bitcoin market. Economics Bulletin, 38(4), 2037–2046. https://ideas.repec.org/a/ebl/ecbull/eb-18-00395.html

Urquhart, A. (2017a). Price clustering in Bitcoin. Economics Letters, 159, 145–148. https://doi.org/10.1016/j.econlet.2017.07.035